Evaluating efficiency in the Brazilian trucking industry
Wanke, Peter Fernandes
http://dx.doi.org/10.1590/S0103-65132012005000088
Prod, vol.23, n3, p.508-524, 2013
Abstract
The purpose of this study is to investigate the issue of efficiency in the Brazilian motor carrier industry using both DEA (Data Envelopment Analysis) and SFA (Stochastic Frontier Analysis) in a complimentary fashion. The study is based on secondary data collected from Transporte Moderno/Maiores e Melhores, a specialized magazine that annually reports statistics on the largest Brazilian trucking companies. Results corroborate not only that increasing returns to scale prevail within this industry, but also provide support for a moderate impact of economies of scope on efficiency levels. Implications in terms of mergers and acquisitions and the impact of cargo diversity and the geographical scope of the operation on virtual efficiency levels are also addressed.
Keywords
Trucking industry. Data envelopment analysis. Three-stage modeling. Stochastic frontier analysis. Mergers
References
ADLER, N.; BERECHMAN, J. Measuring airport quality from the airlines' viewpoint: an application of data envelopment analysis. Transport Policy, v. 8, p. 171-181, 2001. http://dx.doi.org/10.1016/S0967-070X(01)00011-7
ADLER, N.; GOLANY, B. Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe. European Journal of Operations Research, v. 132, p. 260-273, 2001. http://dx.doi.org/10.1016/S0377-2217(00)00150-8
AIGNER, D. J.; LOVELL, C. A. K.; SCHMIDT, P. Formulation and estimation of stochastic frontier production functions. Journal of Econometrics, v. 6, n. 1, p. 21-37, 1977. http://dx.doi.org/10.1016/0304-4076(77)90052-5
ALLEN, A. J.; SHAIK, S.; ESTRADA, J. K. An assessment of the efficiency of agribusiness trucking companies: a Data Envelopment Analysis Approach. In: SOUTHERN AGRICULTURAL ECONOMICS ASSOCIATION ANNUAL MEETINGS, 2005, Little Rock. Proceedings... Little Rock, 2005.
ARNOLD, V.; BARDHAN, I.; COOPER, W. W. New uses of DEA and statistical regressions for efficiency evaluation and estimation with an illustrative application to public secondary schools in Texas. Annals of Operations Research, v. 66, p. 255-278, 1996.
ASLAM, M. An economic analysis of the high-technology sector in the Pakistan economy: a translog cost model approach. 2000. Thesis (Doctorate)-Department of Business Administration, Bahauddin Zakariya University, Multan, Pakistan, 2000.
AVKIRAN, N. K.; ROWLANDS, T. How to better identify the true managerial performance: state of the art using DEA. Omega, v. 36, n. 2, p. 317-324, 2008. http://dx.doi.org/10.1016/j.omega.2006.01.002
BANKER, R. D. Maximum likelihood, consistency and DEA: a statistical foundation. Management Science, v. 39, p. 1265-1273, 1993.
BANKER, R. D.; CHARNES, A.; COOPER, W. W. Some models for estimating technical scale inefficiencies in Data Envelopment Analysis. Management Science, v. 30, p. 1078-1092, 1984. http://dx.doi.org/10.1287/mnsc.30.9.1078
BANKER, R. D.; NATARAJAN, R. Statistical tests based on DEA efficiency scores. In: COOPER, W. W.; SEIFORD, L. M.; ZHU, J. (Eds.). Handbook on Data Envelopment Analysis. Boston: Kluwer International Series, 2004. p. 299-321.
BANKER, R. D.; NATARAJAN, R. Evaluating contextual variables affecting productivity using data envelopment analysis. Operations Research, v. 56, p. 48-58, 2008. http://dx.doi.org/10.1287/opre.1070.0460
BARROS, T. D. et al. Avaliação dos atrasos em transporte aéreo com um modelo DEA. Produção, v. 20, n. 4, p. 601-611, 2010. http://dx.doi.org/10.1590/S0103-65132010005000047
BERECHMAN, J.; ADLER, N. Methodology and Measurement of Airport Quality from the Airlines Viewpoint and its Effects on an Airline's Choice of a West-European Hub Airport. The Netherlands Ministry of Transportation, Directorate General Aviation, 1999. Final Report.
BHATTACHARYYA, A.; LOVELL, C.; SAHAY, P. The impact of liberalization on the productive efficiency of Indian commercial banks. European Journal of Operational Research, v. 98, p. 332-345, 1997. http://dx.doi.org/10.1016/S0377-2217(96)00351-7
BOGETOFT, P.; OTTO, L. Benchmarking with DEA, SFA, and R. New York : Springer, 2010.
CENTRO DE ESTUDOS EM LOGÍSTICA - CEL. Panorama Logístico CEL/COPPEAD - Terceirização Logística no Brasil. Rio de Janeiro: COPPEAD/UFRJ, 2009.
CHARNES, A.; COOPER, W. W.; RHODES, E. Measuring efficiency of decision making units. European Journal of Operational Research, v. 2, p. 429-444, 1978.
CHARNES, A.; COOPER, W. W.; SUEYOSHI, T. A goal programming/constrained regression review of the Bell system breakup. Management Science, v. 34, p. 1-26, 1988.
COOK, W. D.; SEIFORD, L. M. Data envelopment analysis (DEA) - thirty years on. European Journal of Operational Research, v. 192, n. 1, p. 1-17, 2009. http://dx.doi.org/10.1016/j.ejor.2008.01.032
COOPER, W. W.; SEIFORD, L. M.; ZHU, J. Handbook on Data Envelopment Analysis. Boston: Kluwer Academic Publishers, 2004.
COOPER, W. W.; SEIFORD, L. M.; TONE, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-solver Software. New York: Springer, 2007.
CULLINANE, K.; SONG, D. A stochastic frontier model of the productive efficiency of Korean terminals. Applied Economics, v. 35, p. 251-267, 2003. http://dx.doi.org/10.1080/00036840210139355
CULLINANE, K.; SONG, D. Estimating the relative efficiency of European container ports: a stochastic frontier analysis. Research in Transportation Economics, v. 16, p. 85-115, 2006. http://dx.doi.org/10.1016/S0739-8859(06)16005-9
CULLINANE, K.; SONG, D.; WANG, T. The application of mathematical programming approaches to estimating container port production efficiency. Journal of Productivity Analysis, v. 24, p. 73-92, 2005. http://dx.doi.org/10.1007/s11123-005-3041-9
CULLINANE, K. et al. The technical efficiency of container ports: comparing data envelopment analysis and stochastic frontier analysis. Transportation Research Part A, v. 40, p. 354-374, 2006. http://dx.doi.org/10.1016/j.tra.2005.07.003
DULÁ, J. H.; HELGASON, R. V. A new procedure for identifying the frame of the convex hull of a finite collection of points in multidimensional space. European Journal of Operational Research, v. 92, p. 352-367, 1996.
FERRIER, G. D.; LOVELL, C. A. K. Measuring cost efficiency in banking - econometric and linear programming evidence. Journal of Econometrics, v. 6, p. 229-245, 1990.
FIGUEIREDO, K. F.; FLEURY, P. F.; WANKE, P. Logística e Gerenciamento da Cadeia de Suprimentos: Planejamento do Fluxo e dos Recursos. São Paulo: Atlas, 2003.
FLEURY, P. F.; HIJJAR, M. F. Logistics overview in Brazil 2008. Instituto ILOS, 2008. Disponível em:
FLEURY, P. F.; RIBEIRO, A. F. M. A indústria de provedores de serviços logísticos no Brasil. In: FIGUEIREDO, K. F.; FLEURY, P. F.; WANKE, P. Logística e Gerenciamento da Cadeia de Suprimentos: Planejamento do Fluxo e dos Recursos. São Paulo: Atlas, 2003. p. 302-312.
FONSECA, A. B. M. et al. Uniformization of frontiers in non-radial ZSG-DEA models: an application to airport revenues. Pesquisa Operacional, v. 30, n. 1, p. 175-193, 2010.
FRIED, H. O. et al. Accounting for environmental effects and statistical noise in data envelopment analysis. Journal of Productivity Analysis, v. 17, p. 157-174, 2002.
GILLEN, D.; LALL, A. Developing measures of airport productivity and performance: an application of Data Envelopment Analysis. Transportation Research Part E: Logistic and Transportation Review, v. 33 n. 4, 261-273. 1997.
GOLANY, B.; ROLL, Y. An application procedure for DEA. Omega, v. 17, p. 237-250, 1989.
GOMES, E. G. et al. Efficiency and sustainability assessment for a group of farmers in the Brazilian Amazon. Annals of Operations Research, v. 69, p. 167-182, 2009. http://dx.doi.org/10.1007/s10479-008-390-6
GREEN, R.; DOYLE, J.; COOK, W. D. Efficiency bounds in data envelopment analysis. European Journal of Operational Research, v. 89, n. 3, p. 482-490, 1996.
GREENE, W. H. LIMDEP version 9.0 - Econometric modeling guide. New York: Econometric Software, 2007.
GROSSKOPF, S.; YAISAWARANG, S. Economies of scope in the provision of local public services. National tax Journal, v. 43, p. 61-74, 1990.
HAMDAN, A.; ROGERS, K. J. Evaluating the efficiency of 3PL logistics operations. International Journal of Production Economics, v. 113, p. 235-244, 2007. http://dx.doi.org/10.1016/j.ijpe.2007.05.019
HAIR, J. F.; ANDERSON, R. E.; TATHAM, R. L. Multivariate data analysis. New York: Prentice Hall, 1998.
HJALMARSSON, L.; ODECK, J. Efficiency of trucks in road construction and maintenance: an evaluation with data envelopment analysis. Computers & Operations Research, v. 23 n. 4, p. 393-404, 1996.
JENKINS, L.; ANDERSON, L. A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Operational Research, v. 147, p. 51-61, 2003. http://dx.doi.org/10.1016/S0377-2217(02)00243-6
KOHONEN, T. Self-organized formation of topologically correct feature maps. Biological Cybernetics, v. 43, p. 59-69, 1982.
KUMBHAKAR, S. C.; LOVELL, C. A. Stochastic Frontier Analysis. Cambridge: Cambridge University Press, 2003.
LEWIN, A.; MOREY, R.; COOK, T. Evaluating the administrative efficiency of courts. Omega v. 10, p. 401-411, 1982.
LIN, L. C.; TSENG, L. A. Application of DEA and SFA on the measurement of operating efficiencies for 27 international container ports. Proceedings of the Eastern Asia Society for Transportation Studies, v. 5, p. 592-607, 2005.
LIN, L. C.; TSENG, C. C. Operational performance evaluation of major container ports in the Asia-Pacific region. Maritime Policy & Management, v. 34, n. 6, p. 535-551, 2007.
MADDALA, G. Limited-dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press, 1983.
McMULLEN, B. S.; LEE, M. K. Cost efficiency in the US motor carrier industry before and after deregulation: a stochastic frontier approach. Journal of Transport Economics and Policy, v. 33, n. 3, p. 303-317, 1999.
MEEUSEN, W.; VAN DEN BROECK, J. Efficiency estimation from Cobb-Douglas production function with composed error. International Economic Review, v. 8, p. 435-444, 1977.
MEJA, M. M.; CORSI, T. M. Assessing motor carrier potential for improving safety process. Transportation Journal, v. 38, n. 4, p. 36-50, 1999.
MELLO, J. C. Análise de envoltória de dados no estudo da eficiência e dos benchmarks para companhias aéreas brasileiras. Pesquisa Operacional, v. 23, n. 2, p. 325-345, 2003.
MIN, H.; JOO, S. J. Benchmarking the operational efficiency of third party logistics providers using data envelopment analysis. Supply Chain Management An International Journal, v. 11, p. 259-265, 2006. http://dx.doi.org/10.1108/13598540610662167
MIN, H.; PARK, B.-I. Evaluating the inter-temporal efficiency trends of international container terminals using data envelopment analysis. International Journal of Integrated Supply Management, v. 1, n. 3, p. 258-277, 2005.
MIRANDA, C. M. G.; ALMEIDA, A. T. Visão multicritério da avaliação de programas de pós-graduação pela CAPES - o caso da área Engenharias III baseado nos métodos ELECTRE II e MAUT. Gestão & Produção, v. 11, n. 1, p. 51-64, 2004. http://dx.doi.org/10.1590/S0104-530X2004000100005
MORIARTY, H. J. et al. Issues to consider when choosing and using large national databases for research of families. Western Journal of Nursing Research, v. 21, n. 2, p. 143-153, 1999.
NADIMI, R.; JOLAI, F. Joint use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for ranking of Data Envelopment Analysis. International Journal of Mathematical, Physical and Engineeiring Sciences, v. 2, n. 4, p. 218-222, 2008.
NICOLA, P. C. Experimenting with Dynamic Macromodels Growth and Cycles. Berlin: Springer, 2008.
NOVAES, A. G. N.; SILVEIRA, S. F.; MEDEIROS, H. C. Efficiency and productivity analysis of the interstate bus transportation industry in Brazil. Pesquisa Operacional v. 30, n. 2, p. 465-485, 2010.
ODECK, J.; ALKADI, A. Evaluating efficiency of the Norwegian bus industry using data envelopment analysis. Transportation, v. 28, p. 211-232, 2001.
ODECK, J.; HJALMARSSON, L. The performance of trucks - an evaluation using data envelopment analysis. Transportation Planning and Technology, v. 20, n. 1, p. 49-66, 1996.
PACHECO, R. R.; FERNANDES, E. Managerial efficiency of Brazilian airports. Transportation Research Part A v. 37, p. 667-680, 2003. http://dx.doi.org/10.1016/S0965 8564(03)00013-2
POLI, P. M.; SCHERAGA, C. A. A quality assessment of motor carrier maintenance strategies: an application of data envelopment analysis. Quarterly Journal of Business and Economics, v. 40, n. 1, p. 25-43, 2001.
RAY, S. C. A one-step procedure for returns to scale classification of decision making units in data envelopment analysis. University of Connecticut, 2010. Disponível em:
RITTER, C.; SIMAR, L. Pitfalls of normal-gamma stochastic frontier models. Journal of Productivity Analysis, v. 8, n. 2, p. 167-182, 1997.
SARKIS, J.; TALLURI, S. Performance based clustering for benchmarking of US airports. Transportation Research Part A, v. 38, p. 329-346, 2004. http://dx.doi.org/10.1016/j.tra.2003.11.001
SCHEFCZYK, M. Operational performance of airlines: an extension of traditional measurement paradigms. Strategic Management Journal, v. 14, p. 301-317, 1993.
SCHMIDT, P. Frontier production functions. Econometric Reviews, v. 4, p. 289-328, 1985.
SENRA, L. F. et al. Estudo sobre métodos de seleção de variáveis em DEA. Pesquisa Operacional, v. 27, n. 2, p. 191-207, 2007. http://dx.doi.org/10.1590/S0101-74382007000200001
SHARMA, M. J.; YU, S. J. Performance based stratification and clustering for benchmarking of container terminals. Expert Systems with Applications, v. 36, n. 3, p. 5016-5022, 2008. http://dx.doi.org/10.1016/j.eswa.2008.06.010
SHEPARD, M. P. et al. Conceptual and pragmatic considerations in conducting a secondary analysis - an example from research of families. Western Journal of Nursing Research, v. 21, n. 2, p. 154-167, 1999. PMid:11512174.
SIMAR, L.; WILSON, P. W. Estimation and inference in twostage, semiparametric models of production processes. Journal of Econometrics, v. 136, n. 1, p. 31-64, 2007. http://dx.doi.org/10.1016/j.jeconom.2005.07.009
SILVEIRA, J. Q.; MEZA, L. A.; MELLO, J. C. Identificação de benchmarks e anti-benchmarks para companhias aéreas usando modelos DEA e fronteira invertida. Produção, 2011. Ahead of print. http://dx.doi.org/10.1590/S0103-65132011005000004
SOUZA, G. S. et al. Economic efficiency of Embrapa's research centers and the influence of contextual variables. Pesquisa Operacional, v. 27, p. 15-26, 2007. http://dx.doi.org/10.1590/S0101-74382007000100002
SOUZA, G. S.; STAUB, R. B. Two-stage inference using data envelopment analysis efficiency measurements in univariate production models. International Transactions in Operational Research, v. 14, p. 245-258, 2007.
TABACHNICK, B. G.; FIDELL, L. S. Using multivariate statistics. Boston: Allyn and Bacon, 2001.
TURNER, H.; WINDLE, R.; DRESSNER, M. North American containerport productivity: 1984-1997. Transportation Research Part E, v. 40, p. 339-356, 2004. http://dx.doi.org/10.1016/j.tre.2003.06.001
VARGAS, C.; BRICKER, D. Combining DEA and factor analysis to improve evaluation of academic departments given uncertainty about the output constructs. Iowa City: Department of Industrial Engineering, University of Iowa, 2000. Working Paper.
WAGNER, J. M.; SHIMSHAK, D. G. Stepwise selection of variables in data envelopment analysis: procedures and managerial perspectives. European Journal of Operational Research, v. 180, n. 1, p. 57-67, 2007. http://dx.doi.org/10.1016/j.ejor.2006.02.048
WANG, T. F.; SONG, D. W.; CULLINANE, K. The applicability of data envelopment analysis to efficiency measurement of container ports. In: IAME PANAMA INTERNATIONAL STEERING COMITEE, 2002, Panamá. Proceedings... Panamá, 2002.
WANG, W.-K.; LU, W.-M.; TSAI, C.-J. The relationship between airline performance and corporate governance amongst US Listed companies. Journal of Air Transport Management, v 17, n. 2, p. 148-152, 2011.
WANKE, P. F.; FLEURY, P. F. Transporte de Cargas no Brasil: Estudo Exploratório das Principais Variáveis Relacionadas aos Diferentes Modais e às suas Estruturas de Custos. In: NEGRI, J. A.; KUBOTA, L. C. (Orgs.). Estrutura e Dinâmica do Setor de Serviços no Brasil. Brasília: IPEA, 2006.
WANKE, P. F.; AFFONSO, C. R. Determinantes da eficiência de escala no setor brasileiro de operadores logísticos. Produção, v. 21, n. 1, p. 53-63, 2011. http://dx.doi.org/10.1590/S0103-65132010005000045
WEBER, M. M.; WEBER, W. L. Productivity and efficiency in the trucking industry: accounting for traffic fatalities. International Journal of Physical Distribution & Logistics Management, v. 34, n. 1-2, p. 39-61, 2004. http://dx.doi.org/10.1108/09600030410515673
WILSON, D.; PURUSHOTHAMAN, R. Dreaming with BRICs: The path to 2050. Global Economic Paper, 2003. n. 99. Disponível em:
YANG, Z. A two-stage DEA model to evaluate the overall performance of Canadian life and health insurance companies. Mathematical and Computer Modelling, v. 43, n. 7-8, p. 910-919, 2006. http://dx.doi.org/10.1016/j.mcm.2005.12.011
YOUNGBLUT, J. M.; CASPER, G. R. Focus on psychometrics: single-item indicators in nursing research. Research on Nursing in Health, v. 16, p. 459-465, 1993.
ZAREPISHEH, M.; KHORRAM, E.; JAHANSHAHLOO, G. R. Returns to scale in multiplicative models in data envelopment analysis. Annals of Operations Research, v. 173, p. 195-206, 2010. http://dx.doi.org/10.1007/s10479-009-0537-0
ZHOU, G. et al. Evaluating the comparative efficiency of Chinese third-party logistics providers using data envelopment analysis. International Journal of Physical Distribution & Logistics Management, v. 38, n. 4, p. 262-279, 2008. http://dx.doi.org/10.1108/09600030810875373
ZHU, J. Quantitative Models for Performance Evaluation and Benchmarking: Data Envelopment Analysis with Spreadsheets and DEA Excel Solver. New York: Springer, 2003.
ZILL, N.; DALY, M. Researching the family A guide to survey and statistical data in US families. Washington: U.S. Department of Health and Human Services, 1993.