Production
https://prod.org.br/article/doi/10.1590/S0103-65132012005000081
Production
Article

Local search-based heuristics for the multiobjective multidimensional knapsack problem

Vianna, Dalessandro Soares; Vianna, Marcilene de Fátima D.

Downloads: 1
Views: 1076

Abstract

In real optimization problems it is generally desirable to optimize more than one performance criterion (or objective) at the same time. The goal of the multiobjective combinatorial optimization (MOCO) is to optimize simultaneously r > 1 objectives. As in the single-objective case, the use of heuristic/metaheuristic techniques seems to be the most promising approach to MOCO problems because of their efficiency, generality and relative simplicity of implementation. In this work, we develop algorithms based on Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated Local Search (ILS) metaheuristics for the multiobjective knapsack problem. Computational experiments on benchmark instances show that the proposed algorithms are very robust and outperform other heuristics in terms of solution quality and running times.

Keywords

Multiobjective multidimensional knapsack problem. Multiobjective combinatorial optimization. GRASP. ILS.

References



ALVES, M. J.; ALMEIDA, M. M. A multiobjective Tchebycheff based genetic algorithm for the multidimensional knapsack problem. Computers & Operations Research, v. 34, p. 3458-3470, 2007. http://dx.doi.org/10.1016/j.cor.2006.02.008

ARROYO, J. E. C.; VIEIRA, P. S.; VIANNA, D. S. A GRASP algorithm for the multi-criteria minimum spanning tree problem. Annals of Operations Research, v. 159, p. 125-133, 2008. http://dx.doi.org/10.1007/s10479-007-0263-4

COELLO, C. A. C. An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, v. 32, n. 2, p. 109-143, 2000. http://dx.doi.org/10.1145/358923.358929

CZYZAK, P.; JASZKIEWICZ, A. Pareto simulated annealing - a metaheuristic technique for multiple objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, v. 7, p. 34-47, 1998. http://dx.doi.org/10.1002/(SICI)1099-1360(199801)7:1<34::AID-MCDA161>3.0.CO;2-6

DEB, K. Multi-objective optimization using evolutionary algorithms. England: John Wiley & Sons Ltd., 2004.

EHRGOTT, M.; GANDIBLEUX, X. A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, v. 22, p. 425-460, 2000. http://dx.doi.org/10.1007/s002910000046

EPPRECHT, E. K.; LEIRAS, A. Otimização conjunta de gráficos de X-barra-S ou X-barra-R: um procedimento de fácil implementação. Produção, v. 17, n. 3, p. 520-535, 2007.

FEO, T. A.; RESENDE, M. G. C. Greedy randomized adaptive search procedures. Journal of Global Optimization, v. 6, p. 109-133, 1995. http://dx.doi.org/10.1007/BF01096763

GANDIBLEUX, X.; FRÉVILLE, A. Tabu search based procedure for solving the 0-1 multiobjective knapsack problem: The two objectives case. Journal of Heuristics, v. 6, p. 361-383, 2000. http://dx.doi.org/10.1023/A:1009682532542

HANSEN, P. Tabu search for multiobjective optimization: MOTS. Technical Report. Technical University of Denmark. In: INTERNATIONAL CONFERENCE ON MULTIPLE CRITERIA DECISION MAKING, 13., 1997, Cape Town. Proceedings... Cape Town, 1997.

JASKIEWICZ, A. On the performance of multiple objective genetic local search on the 0/1 knapsack problem: A comparative experiment. IEEE Transaction on Evolutionary Computation, v. 6, n. 4, p. 402-412, 2002. http://dx.doi.org/10.1109/TEVC.2002.802873

JONES, D. F.; MIRRAZAVI, S. K.; TAMIZ, M. Multi-objective metaheuristics: An overview of the current state-of-art. European Journal of Operational Research, v. 137, p. 1-19, 2002. http://dx.doi.org/10.1016/S0377-2217(01)00123-0

LINS, I. D.; DROGUETT, E. L. Multiobjective optimization of availability and cost in repairable systems design via genetic algorithms and discrete event simulation. Pesquisa Operacional, v. 29, n. 1, p. 43-66, 2009. http://dx.doi.org/10.1590/S0101-74382009000100003

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search. In: GLOVER, F.; KOCHENBERGER, G. (Eds.). Handbook of Metaheuristics. Kluwer, 2002. p. 321-353.

MAURI, G. R.; LORENA, L. A. N. Uma nova abordagem para o problema dial-a-ride. Produção, v. 19, n. 1, p. 41-54, 2009. http://dx.doi.org/10.1590/S0103-65132009000100004

MURATA, T.; ISHIBUCHI, H.; GEN, M. Specification of genetic Search directions in cellular multi-objective genetic algorithms. In: INTERNATIONAL CONFERENCE ON EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2001, Zurich. Proceedings... Zurich: Springer, 2001. v. 1, p. 82-95.

RESENDE, M. G. C.; RIBEIRO, C. C. Greedy randomized adaptive search procedures. In: GLOVER, F.; KOCHENBERGER, G. (Eds.). Handbook of Metaheuristics. Boston: Kluwer, 2003. p. 219-249.

RIBEIRO, C. C. et al. A hybrid heuristic for a multi-objective real-life car sequencing problem with painting and assembly line constraints. European Journal of Operational Research, v. 191, p. 981-992, 2008. http://dx.doi.org/10.1016/j.ejor.2007.04.034

ULUNGU, E. L.; TEGHEM, J. The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems. Foundations of Computing and Decision Sciences, v. 20, n. 2, p. 149-165, 1995.

ULUNGU, E. L.; TEGHEM, J.; OST, C. Efficiency of interactive multi-objective simulated annealing through a case study. Journal of the Operational Research Society, v. 49, p. 1044-1050, 1998.

VAN VELDHUIZEN D. A.; LAMONT, G. B. Multiobjective evolutionary algorithms: Analyzing the state-of art. Evolutionary Computation, v. 8, n. 2, p. 125-147, 2000. http://dx.doi.org/10.1162/106365600568158

VIANNA, D. S. et al. Parallel strategies for a multi-criteria GRASP algorithm. Produção, v. 17, p. 1-12, 2007. http://dx.doi.org/10.1590/S0103-65132007000100006

VISÉE, M. et al. Two-Phases Method and Branch and Bound Procedures to solve the Bi-objectives knapsack Problem. Journal of Global Optimization, v. 12, p. 139-155, 1998. http://dx.doi.org/10.1023/A:1008258310679

ZITZLER, E.; THIELE, L. Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation, v. 3, n. 4, p. 257-271, 1999. http://dx.doi.org/10.1109/4235.797969

ZITZLER, E.; LAUMANNS, M.; THIELE, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: GIANNAKOGLOU, K. et al. (Eds.). Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems. Athens, 2002. p. 95-100.
5883a43e7f8c9da00c8b484e 1574685864 Articles
Links & Downloads

Production

Share this page
Page Sections