Production
https://prod.org.br/article/doi/10.1590/0103-6513.20240010
Production
Research Article

Maintenance strategy selection using bayesian networks

Raúl Torres-Sainz; Leonardo Sánchez-Aguilera; Carlos Alberto Trinchet-Varela; Lidia María Pérez-Vallejo; Roberto Pérez-Rodríguez

Downloads: 0
Views: 45

Abstract

Paper aims: The aim of this study is to develop a bayesian network model for selecting maintenance strategies.

Originality: This model evaluates the consequences and complexity of breakdowns, but also integrates the intelligent predictive maintenance policy, taking into account aspects such as available technology, diagnostic tools, staff training and the use of artificial intelligence, which can be applied at all levels.

Research method: A literature review was conducted to map the criteria used in the selection of maintenance strategies. The KANO model was then employed to select the criteria for the model, and a system of rules was established for the selection of maintenance strategies. The Monte Carlo method was used for the simulation of possible combinations in consideration of the rule system. Using this data, the bayesian network was learned, trained, and validated.

Main findings: The results show that the proposed model is highly reliable, with an accuracy of approximately 98%.

Implications for theory and practice: This study makes significant contributions to the field of maintenance by introducing a novel bayesian network model enriched with the Kano model. This comprehensive framework offers a practical approach for optimizing maintenance decisions by integrating both technical and perceptual aspects of maintenance.

Keywords

Maintenance management, Maintenance strategy selection, Bayesian networks

References

Bai, H. (2023). Network equipment fault maintenance decision system based on bayesian decision algorithm. In Proceedings of the 2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT) (pp. 1197-1202). USA: IEEE. http://doi.org/10.1109/ICCECT57938.2023.10140701.

Bartz, T., Cézar, J., & Siluk, M. (2011). Evaluation of maintenance performance in a Metalworking Company: a case study and proposal of new indicators. Product: Management & Development, 9(1), 77-85. http://doi.org/10.4322/pmd.2011.009.

Bashiri, M., Badri, H., & Hejazi, T. H. (2011). Selecting optimum maintenance strategy by fuzzy interactive linear assignment method. Applied Mathematical Modelling, 35(1), 152-164. http://doi.org/10.1016/j.apm.2010.05.014.

Behnia, F., Zare Ahmadabadi, H., Schuelke-Leech, B.-A., & Mirhassani, M. (2023). Developing a fuzzy optimized model for selecting a maintenance strategy in the paper industry: An integrated FGP-ANP-FMEA approach. Expert Systems with Applications, 232, 120899. http://doi.org/10.1016/j.eswa.2023.120899.

Bertolini, M., & Bevilacqua, M. (2006). A combined goal programming—AHP approach to maintenance selection problem. Reliability Engineering & System Safety, 91(7), 839-848. http://doi.org/10.1016/j.ress.2005.08.006.

Bevilacqua, M., & Braglia, M. (2000). The analytic hierarchy process applied to maintenance strategy selection. Reliability Engineering & System Safety, 70(1), 71-83. http://doi.org/10.1016/S0951-8320(00)00047-8.

Bottani, E., Ferretti, G., Montanari, R., & Vignali, G. (2014). An empirical study on the relationships between maintenance policies and approaches among Italian companies. Journal of Quality in Maintenance Engineering, 20(2), 135-162. http://doi.org/10.1108/JQME-11-2012-0039.

Chen, Z., & Ge, Z. (2023). Directed acyclic graphs with tears. IEEE Transactions on Artificial Intelligence, 4(4), 972-983. http://doi.org/10.1109/TAI.2022.3181115.

Chua, S. J. L., Zubbir, N. B., Ali, A. S., & Au-Yong, C. P. (2018). Maintenance of high-rise residential buildings. International Journal of Building Pathology and Adaptation, 36(2), 137-151. http://doi.org/10.1108/IJBPA-09-2017-0038.

Davoudpour, H. (2019). A hierarchical bayesian network to compare maintenance strategies based on cost and reliability: a case of onshore wind turbines. International Journal of Industrial Engineering: Theory. Applications and Practice, 26(3), 3. http://doi.org/10.23055/ijietap.2019.26.3.1887.

Daya, A. A., & Lazakis, I. (2023). Developing an advanced reliability analysis framework for marine systems operations and maintenance. Ocean Engineering, 272, 113766. http://doi.org/10.1016/j.oceaneng.2023.113766.

Dhouibi, H., Chihani, K., Gascard, E., & Simeu-Abazi, Z. (2023). Application of fault trees and BN for maintenance. In Proceedings of the 2023 International Conference on Control, Automation and Diagnosis (ICCAD) (pp. 1-6). USA: IEEE. https://doi.org/10.1109/ICCAD57653.2023.10152333.

El-Hadidy, M. A. A., & Elshenawy, A. O. (2023). A probabilistic early fault detection model for a feedback machining system with multiple types of spares. Scientific Reports, 13(1), 22609. http://doi.org/10.1038/s41598-023-49073-6. PMid:38114586.

Fedorov, R., & Pavlyuk, D. (2023). Taxonomy of candidate’s selection for prioritized predictive maintenance in maintenance, repairs and overhaul organizations. Journal of Quality in Maintenance Engineering, 29(3), 589-605. http://doi.org/10.1108/JQME-04-2022-0022.

Firdaus, N., Ab-Samat, H., & Prasetyo, B. (2023). Maintenance strategies and energy efficiency: A review. Journal of Quality in Maintenance Engineering, 29(3), 640-665. http://doi.org/10.1108/JQME-06-2021-0046.

Ge, Y., Xiao, M., Yang, Z., Zhang, L., Hu, Z., & Feng, D. (2017). An integrated logarithmic fuzzy preference programming based methodology for optimum maintenance strategies selection. Applied Soft Computing, 60, 591-601. http://doi.org/10.1016/j.asoc.2017.07.021.

Gedikli, T., & Ervural, B. (2023). Evaluation of Maintenance Policies Using a Two-Stage Pythagorean-Based Group Decision-Making Approach. International Journal of Fuzzy Systems, 25(5), 1795-1817. http://doi.org/10.1007/s40815-023-01476-3.

Gökhan-Kahraman, M. (2022). Failure-based maintenance planning using BN: a case study hydraulic turbine. Journal, 11(1), 301-312.

Gupta, S., Kumar, A., & Maiti, J. (2024). A critical review on system architecture, techniques, trends and challenges in intelligent predictive maintenance. Safety Science, 177, 106590. http://doi.org/10.1016/j.ssci.2024.106590.

Gursel, E., Reddy, B., Khojandi, A., Madadi, M., Coble, J. B., Agarwal, V., Yadav, V., & Boring, R. L. (2023). Using artificial intelligence to detect human errors in nuclear power plants: a case in operation and maintenance. Nuclear Engineering and Technology, 55(2), 603-622. http://doi.org/10.1016/j.net.2022.10.032.

Huang, K., Kong, X., & Sandrasegaran, K. (2014). Analysis of the influence to productivity of software corrective maintenance using an economic model. In Proceedings of 2nd International Conference on Information Technology and Electronic Commerce (pp. 117-121). USA: IEEE. http://doi.org/10.1109/ICITEC.2014.7105584.

Ierace, S., & Cavalieri, S. (2008). Maintenance strategy selection: a comparison between fuzzy logic and analytic hierarchy process. Proceedings of the 9th IFAC Workshop on Intelligent Manufacturing Systems, 41(3), 228-233. http://doi.org/10.3182/20081205-2-CL-4009.00041.

Karar, A. N., Labib, A., & Jones, D. (2023). Post-warranty maintenance strategy selection using shape packages process. International Journal of Production Economics, 255, 108702. http://doi.org/10.1016/j.ijpe.2022.108702.

Khanfri, N. E. H., Ouazraoui, N., Simohammed, A., & Sellami, I. (2023). New hybrid MCDM approach for an optimal selection of maintenance strategies: results of a case study. SPE Production & Operations, 38(04), 724-745. http://doi.org/10.2118/215846-PA.

Letot, C., Equeter, L., Dutoit, C., & Dehombreux, P. (2017). Updated operational reliability from degradation indicators and adaptive maintenance strategy. In C. Volosencu (Ed.), System reliability (Chap. 4). London: IntechOpen. http://doi.org/10.5772/intechopen.69281.

Lopez, J. C., & Kolios, A. (2022). Risk-based maintenance strategy selection for wind turbine composite blades. Energy Reports, 8, 5541-5561. http://doi.org/10.1016/j.egyr.2022.04.027.

Lu, Q., Zhang, W., Hughes, W., & Bagtzoglou, A. C. (2022). Bayesian decision network–based optimal selection of hardening strategies for power distribution systems. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part A, Civil Engineering, 8(3), 04022038. http://doi.org/10.1061/AJRUA6.0001253.

Miao, P., Srimahachota, T., Wu, Y., Ma, S., & Zhou, C. (2024). Information fusion-based maintenance strategies selection for coastal concrete bridges using recycled fishing nets. STRUCTURES, 63, 106456. http://doi.org/10.1016/j.istruc.2024.106456.

Misaii, H., Haghighi, F., & Fouladirad, M. (2022). Opportunistic perfect preventive maintenance policy in presence of masked data. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 236(6), 1024-1036. https://doi.org/10.1177/1748006X211058936.

Nedzanani, A., Telukdarie, A., & Mwanza, B. G. (2022). Selection of maintenance strategies using DMG. In: Proceedings of the 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 359-363). USA: IEEE. http://doi.org/10.1109/IEEM55944.2022.9989993.

Özcan, E. C., Ünlüsoy, S., & Eren, T. (2017). A combined goal programming – AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants. Renewable & Sustainable Energy Reviews, 78, 1410-1423. http://doi.org/10.1016/j.rser.2017.04.039.

Perera, N., De Silva, D., Serasinghe, C., Gunathilake, M., Perera, S., & Samarasinghe, D. (2023). Examining The Role of Software Maintenance in Ensuring Software Quality. Authorea, May 01.

Seiti, H., & Hafezalkotob, A. (2019). Developing the R-TOPSIS methodology for risk-based preventive maintenance planning: A case study in rolling mill company. Computers & Industrial Engineering, 128, 622-636. http://doi.org/10.1016/j.cie.2019.01.012.

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54-70. http://doi.org/10.1016/j.cogr.2023.04.001.

Wang, K. (2014). Key Techniques in Intelligent Predictive Maintenance (IPdM) – A Framework of Intelligent Faults Diagnosis and Prognosis System (IFDaPS). Advanced Materials Research, 1039, 490-505. http://doi.org/10.4028/www.scientific.net/AMR.1039.490.

Yazdi, M., Golilarz, N. A., Nedjati, A., & Adesina, K. A. (2022). Intelligent Fuzzy Pythagorean Bayesian Decision Making of Maintenance Strategy Selection in Offshore Sectors. In: C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A.C. Tolga, I.U. Sari (Eds.), Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation. Lecture Notes in Networks and Systems: Vol. 308. Cham: Springer. hhttp://doi.org/10.1007/978-3-030-85577-2_70.

Zwolińska, B., & Wiercioch, J. (2022). Selection of Maintenance Strategies for Machines in a Series-Parallel System. Sustainability, 14(19), 11953. http://doi.org/10.3390/su141911953.
 


Submitted date:
01/27/2024

Accepted date:
10/27/2024

675c8de8a953957b6a385703 production Articles
Links & Downloads

Production

Share this page
Page Sections