Maintenance strategy selection using bayesian networks
Raúl Torres-Sainz; Leonardo Sánchez-Aguilera; Carlos Alberto Trinchet-Varela; Lidia María Pérez-Vallejo; Roberto Pérez-Rodríguez
Abstract
Keywords
References
Bai, H. (2023). Network equipment fault maintenance decision system based on bayesian decision algorithm. In
Bartz, T., Cézar, J., & Siluk, M. (2011). Evaluation of maintenance performance in a Metalworking Company: a case study and proposal of new indicators.
Bashiri, M., Badri, H., & Hejazi, T. H. (2011). Selecting optimum maintenance strategy by fuzzy interactive linear assignment method.
Behnia, F., Zare Ahmadabadi, H., Schuelke-Leech, B.-A., & Mirhassani, M. (2023). Developing a fuzzy optimized model for selecting a maintenance strategy in the paper industry: An integrated FGP-ANP-FMEA approach.
Bertolini, M., & Bevilacqua, M. (2006). A combined goal programming—AHP approach to maintenance selection problem.
Bevilacqua, M., & Braglia, M. (2000). The analytic hierarchy process applied to maintenance strategy selection.
Bottani, E., Ferretti, G., Montanari, R., & Vignali, G. (2014). An empirical study on the relationships between maintenance policies and approaches among Italian companies.
Chen, Z., & Ge, Z. (2023). Directed acyclic graphs with tears.
Chua, S. J. L., Zubbir, N. B., Ali, A. S., & Au-Yong, C. P. (2018). Maintenance of high-rise residential buildings.
Davoudpour, H. (2019). A hierarchical bayesian network to compare maintenance strategies based on cost and reliability: a case of onshore wind turbines.
Daya, A. A., & Lazakis, I. (2023). Developing an advanced reliability analysis framework for marine systems operations and maintenance.
Dhouibi, H., Chihani, K., Gascard, E., & Simeu-Abazi, Z. (2023). Application of fault trees and BN for maintenance. In
El-Hadidy, M. A. A., & Elshenawy, A. O. (2023). A probabilistic early fault detection model for a feedback machining system with multiple types of spares.
Fedorov, R., & Pavlyuk, D. (2023). Taxonomy of candidate’s selection for prioritized predictive maintenance in maintenance, repairs and overhaul organizations.
Firdaus, N., Ab-Samat, H., & Prasetyo, B. (2023). Maintenance strategies and energy efficiency: A review.
Ge, Y., Xiao, M., Yang, Z., Zhang, L., Hu, Z., & Feng, D. (2017). An integrated logarithmic fuzzy preference programming based methodology for optimum maintenance strategies selection.
Gedikli, T., & Ervural, B. (2023). Evaluation of Maintenance Policies Using a Two-Stage Pythagorean-Based Group Decision-Making Approach.
Gökhan-Kahraman, M. (2022). Failure-based maintenance planning using BN: a case study hydraulic turbine.
Gupta, S., Kumar, A., & Maiti, J. (2024). A critical review on system architecture, techniques, trends and challenges in intelligent predictive maintenance.
Gursel, E., Reddy, B., Khojandi, A., Madadi, M., Coble, J. B., Agarwal, V., Yadav, V., & Boring, R. L. (2023). Using artificial intelligence to detect human errors in nuclear power plants: a case in operation and maintenance.
Huang, K., Kong, X., & Sandrasegaran, K. (2014). Analysis of the influence to productivity of software corrective maintenance using an economic model. In
Ierace, S., & Cavalieri, S. (2008). Maintenance strategy selection: a comparison between fuzzy logic and analytic hierarchy process.
Karar, A. N., Labib, A., & Jones, D. (2023). Post-warranty maintenance strategy selection using shape packages process.
Khanfri, N. E. H., Ouazraoui, N., Simohammed, A., & Sellami, I. (2023). New hybrid MCDM approach for an optimal selection of maintenance strategies: results of a case study.
Letot, C., Equeter, L., Dutoit, C., & Dehombreux, P. (2017). Updated operational reliability from degradation indicators and adaptive maintenance strategy. In C. Volosencu (Ed.),
Lopez, J. C., & Kolios, A. (2022). Risk-based maintenance strategy selection for wind turbine composite blades.
Lu, Q., Zhang, W., Hughes, W., & Bagtzoglou, A. C. (2022). Bayesian decision network–based optimal selection of hardening strategies for power distribution systems.
Miao, P., Srimahachota, T., Wu, Y., Ma, S., & Zhou, C. (2024). Information fusion-based maintenance strategies selection for coastal concrete bridges using recycled fishing nets.
Misaii, H., Haghighi, F., & Fouladirad, M. (2022). Opportunistic perfect preventive maintenance policy in presence of masked data.
Nedzanani, A., Telukdarie, A., & Mwanza, B. G. (2022). Selection of maintenance strategies using DMG. In:
Özcan, E. C., Ünlüsoy, S., & Eren, T. (2017). A combined goal programming – AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants.
Perera, N., De Silva, D., Serasinghe, C., Gunathilake, M., Perera, S., & Samarasinghe, D. (2023). Examining The Role of Software Maintenance in Ensuring Software Quality. Authorea, May 01.
Seiti, H., & Hafezalkotob, A. (2019). Developing the R-TOPSIS methodology for risk-based preventive maintenance planning: A case study in rolling mill company.
Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review.
Wang, K. (2014). Key Techniques in Intelligent Predictive Maintenance (IPdM) – A Framework of Intelligent Faults Diagnosis and Prognosis System (IFDaPS).
Yazdi, M., Golilarz, N. A., Nedjati, A., & Adesina, K. A. (2022). Intelligent Fuzzy Pythagorean Bayesian Decision Making of Maintenance Strategy Selection in Offshore Sectors. In: C. Kahraman, S. Cebi, S. Cevik Onar, B. Oztaysi, A.C. Tolga, I.U. Sari (Eds.),
Zwolińska, B., & Wiercioch, J. (2022). Selection of Maintenance Strategies for Machines in a Series-Parallel System.
Submitted date:
01/27/2024
Accepted date:
10/27/2024