Production
https://prod.org.br/article/doi/10.1590/0103-6513.20230091
Production
Research Article

A novel methodology to obtain optimal economic indicators based on the Argentinean production chain under uncertainty

Federico Gabriel Camargo; Francisco Guido Rossomando; Daniel Ceferino Gandolfo; Esteban Antonio Sarroca; Omar Roberto Faure; Eduardo Andrés Pérez

Downloads: 0
Views: 119

Abstract

Paper aims: This novel methodology obtains the optimal economic evaluation of emissions (carbon price) under uncertainty (Fuzzy Decision Making), and hierarchical variation (Analytic Hierarchy Process) within the Argentine production chain (Life Cycle Analysis with Supply and Demand Side Management), obtaining a novel model of market equilibrium.

Originality: 1) a novel optimal economic (marginal) evaluation index called Generic Camargo Intrinsic Cost, 2) optimal graphical attribute efficiency points, regions and boundaries and their optimal economic evaluation and 3) a Computable General Equilibrium Model with fundamental uncertainty.

Research method: The theoretical, practical and economic contribution and results (mathematical and graphical analysis) of this novel methodology and tools are developed, generalised and analysed.

Main findings: All three of the above original contributions have been analysed using the above research method, with excellent and promising results.

Implications for theory and practice: The optimal economic evaluation (externality) of the Argentinean production chain under uncertainty is obtained.

Keywords

Argentinean Production Chain (APC), Fuzzy Decision Making (FDM), Analytic Hierarchy Process (AHP), Particle Swarm Optimisation (PSO), Life Cycle Analysis (LCA), Supply Side Management (SSM), Demand Side Management (DSM) optimisation, Computable General Equilibrium Model with fundamental uncertainty

References

Al Shammre, A. S., Benhamed, A., Ben-Salha, O., & Jaidi, Z. (2023). Do environmental taxes affect carbon dioxide emissions in OECD countries? Evidence from the dynamic panel threshold model. Systems, 11(6), 307. http://doi.org/10.3390/systems11060307.

Alizamir, M., Othman Ahmed, K., Shiri, J., Fakheri Fard, A., Kim, S., Heddam, S., & Kisi, O. (2023). A new insight for daily solar radiation prediction by meteorological data using an advanced artificial intelligence algorithm: deep extreme learning machine integrated with variational mode decomposition technique. Sustainability, 15(14), 11275. http://doi.org/10.3390/su151411275.

Argentina, Ministerio de Energía y Minería. (2023). Datos energía. Retrieved in 2023, May 20, from http://datos.energia.gob.ar/

Camargo, F. G. (2019). Metodología regulatoria para propiciar la eficiencia energética desde el lado de la oferta en sistemas de distribución de energía eléctrica (330 p.). Colombia: Fundación Suyay. Retrieved in 2023, May 20, from http://hdl.handle.net/20.500.12272/7010

Camargo, F. G. (2021). Survey and calculation of the energy potential and solar, wind and biomass EROI: application to a case study in Argentina. Dyna, 88(219), 50-58. http://doi.org/10.15446/dyna.v88n219.95569.

Camargo, F. G. (2022a). Dynamic modeling of the energy returned on invested. Dyna, 89(221), 50-59. http://doi.org/10.15446/dyna.v89n221.97965.

Camargo, F. G. (2022b). Fuzzy multi-objective optimization of the energy transition towards renewable energies with a mixed methodology. Production, 32, e20210132. http://doi.org/10.1590/0103-6513.20210132.

Camargo, F. G. (2023). A hybrid novel method to economically evaluate the carbon dioxide emissions in the productive chain of Argentina. Production, 33, e20220053. http://doi.org/10.1590/0103-6513.20220053.

Camargo, F. G., & Schweickardt, G. A. (2014). Estimación de la tasa de retorno energético: análisis comparativo de las metodologías disponibles en la actualidad. Maskana, 5, 65-73. Retrieved in 2023, May 20, from https://publicaciones.ucuenca.edu.ec/ojs/index.php/maskana/article/view/575

Camargo, F. G., Schweickardt, G. A., & Casanova, C. A. (2018). Maps of Intrinsic Cost (IC) in reliability problems of medium voltage power distribution systems through a Fuzzy multi-objective model. Dyna, 85(204), 334-343. http://doi.org/10.15446/dyna.v85n204.65836.

Camargo, F. G., Casanova Pietroboni, C. A., Pérez, E., & Schweickardt, G. A. (2019). Metodología regulatoria para propiciar la eficiencia energética desde el lado de la oferta con penetración de fuentes primarias de energías renovables. Parte 1: descripción y alcance del modelo de optimización. Buenos Aires: Universidad Tecnológica Nacional. Retrieved in 2023, May 20, from https://ria.utn.edu.ar/handle/20.500.12272/5349

Camargo, F. G., Sarroca, E., Faure, O., Argañaraz, F. D., Cabana, J. A., Karam, C., Sosa, G., Romero, Y. R., Calbo, V., & Perez, E. A. (2023a). Discusión de la teoría económica y su aplicación en modelos multidisciplinarios energéticos: parte 1: introducción a los métodos de decisión difusos. Revista de la Escuela de Perfeccionamiento en Investigación Operativa, 31(53), 56-75. Retrieved in 2023, May 20, from https://revistas.unc.edu.ar/index.php/epio/article/view/41269

Camargo, F. G., Rossomando, F., Gandolfo, D., Faure, O., Sarroca, E., Argañaraz, F. D., Cabana, J. A., Karam, C., Sosa, G., Romero, Y. R., Douglas, G. N., Nieto, F. G., & Arias, E. N. (2023b). Modelo multi-objetivo difuso que incorpore las energías renovables: aplicación de la metaheurística EPSO. Revista de la Escuela de Perfeccionamiento en Investigación Operativa, 31(54), 5-24. Retrieved in 2023, May 20, from https://revistas.unc.edu.ar/index.php/epio/article/view/43360

Casanova, C., Schweickardt, G., & Camargo, F. (2018). Modelo hiperheurístico HY X-FPSO CBR SII soportado en metaheurísticas X-PSO multiobjetivo para resolver una clase de problemas de optimización combinatoria. Revista de la Escuela de Perfeccionamiento en Investigación Operativa, 26(44), 4-20. Retrieved in 2023, May 20, from https://revistas.unc.edu.ar/index.php/epio/article/view/22200

Causil, O. M. M., & Morais, D. C. (2023). Multicriteria negotiation model for selecting sustainable suppliers’ problem in the agribusiness. Production, 33, e20220090. http://doi.org/10.1590/0103-6513.20220090.

Fuentes-Morales, R. F., Diaz-Ponce, A., Peña-Cruz, M. I., Rodrigo, P. M., Valentín-Coronado, L. M., Martell-Chavez, F., & Pineda-Arellano, C. A. (2020). Control algorithms applied to active solar tracking systems: a review. Solar Energy, 212, 203-219. http://doi.org/10.1016/j.solener.2020.10.071.

Guang, F., Deng, Y., Wen, L., Sharp, B., & Hong, S. (2023). Impact of regional energy allocation distortion on carbon emission efficiency: evidence from China. Journal of Environmental Management, 342, 118241. http://doi.org/10.1016/j.jenvman.2023.118241. PMid:37276622.

Hassan, Q. (2021). Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification. Renewable Energy, 164, 375-390. http://doi.org/10.1016/j.renene.2020.09.008.

Hu, B., & Cheng, Y. (2023). Prediction of regional carbon price in China based on secondary decomposition and nonlinear error correction. Energies, 16(11), 4444. http://doi.org/10.3390/en16114444.

Huang, W., Miao, J., & Wei, T. (2023). Rebound effects of energy efficiency improvement based on computable general equilibrium models: a systematic review. Energy Efficiency, 16(6), 65. http://doi.org/10.1007/s12053-023-10148-y.

Kang, Z., Ye, Z., & Hsu, S. C. (2023). Developing an hourly-resolution well-to-wheel carbon dioxide emission inventory of electric vehicles. Resources, Conservation and Recycling, 190, 106819. http://doi.org/10.1016/j.resconrec.2022.106819.

Liu, M., & Ying, Q. (2023). The role of online news sentiment in carbon price prediction of China’s carbon markets. Environmental Science and Pollution Research International, 30(14), 41379-41387. http://doi.org/10.1007/s11356-023-25197-0. PMid:36627425.

Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738. http://doi.org/10.1016/j.eswa.2020.113738.

Rodríguez, V. A. M., Villaseñor, N. V., Solís, J. M. R., & Barbosa, O. A. G. (2023). Impact of automation on enhancing energy quality in grid-connected photovoltaic systems. Energies, 16(17), 6161. http://doi.org/10.3390/en16176161.

Rudnik, K., Hnydiuk-Stefan, A., Li, Z., & Ma, Z. (2023). Short-term modeling of carbon price based on fuel and energy determinants in EU ETS. Journal of Cleaner Production, 417, 137970. http://doi.org/10.1016/j.jclepro.2023.137970.

Saaty, T. L. (2003). Decision-making with the AHP: why is the principal eigenvector necessary. European Journal of Operational Research, 145(1), 85-91. http://doi.org/10.1016/S0377-2217(02)00227-8.

Schweickardt, G., & Pistonesi, H. (2010). Un modelo posibilístico para estimar el costo intrínseco de la energía no suministrada en sistemas de distribución eléctrica. Dyna, 77(162), 249-259.

Sirin, S. M., Camadan, E., Erten, I. E., & Zhang, A. H. (2023). Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices. Energy Policy, 180, 113647. http://doi.org/10.1016/j.enpol.2023.113647.

Spain, Ministerio de Energía y Minería. (2023). Materias primas: futuros emisiones de carbono. Investing. Retrieved in 2023, May 20, from https://es.investing.com/commodities/carbon-emissions-historical-data

Wang, H., Mansor, N. N. B., Mokhlis, H. B., & Mashhadi, A. (2023a). Optimal size selection of combined diesel generator/fuel cell/photovoltaic system components using a multi‐objective strategy and sea lion optimization algorithm. IET Renewable Power Generation. In press. http://doi.org/10.1049/rpg2.12795.

Wang, J., Zhuang, Z., & Gao, D. (2023b). An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction. Omega, 120, 102922. http://doi.org/10.1016/j.omega.2023.102922.

Wei, T., & Aaheim, A. (2023). Climate change adaptation based on computable general equilibrium models–a systematic review. International Journal of Climate Change Strategies and Management, 15(4), 561-576. http://doi.org/10.1108/IJCCSM-03-2022-0031.

Wu, C. H., Wang, H. C., & Chang, H. Y. (2022). Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking. Energy for Sustainable Development, 66, 308-318. http://doi.org/10.1016/j.esd.2021.12.013.

Yang, H., Wang, M., & Li, G. (2023). A combined prediction model based on secondary decomposition and intelligence optimization for carbon emission. Applied Mathematical Modelling, 121, 484-505. http://doi.org/10.1016/j.apm.2023.05.007.

Yeo, Y., & Oh, I. (2023). Evaluating the impacts of renewable energy promotion policies on sustainable development: a computable general equilibrium model approach. Journal of Cleaner Production, 421, 138360. http://doi.org/10.1016/j.jclepro.2023.138360.
 


Submitted date:
11/28/2023

Accepted date:
09/02/2024

672394c9a953955179488533 production Articles
Links & Downloads

Production

Share this page
Page Sections