Cost at Risk (CaR): a Methodology for Costing under Uncertainty
Victor Jiménez Carabalí; Paulo Afonso
Abstract
Keywords
References
Abed, E., Safadi, E., Adrot, O., & Flaus, J.-M. (2015). Advanced Monte Carlo Method for model uncertainty propagation in risk assessment.
Afonso, P., & Jiménez, V. J. (2016). Costing systems for decision making under uncertainty using probabilistic models. In D. J. Jakóbczak.
Akoka, J., Comyn-Wattiau, I., Prat, N., & Storey, V. C. (2022). Knowledge contributions in design science research: Paths of knowledge types.
Anderson, T. W., & Darling, D. A. (1954). A test of godness of fit.
Baskerville, R. L., Kaul, M., & Storey, V. C. (2015). Genres of inquiry in design-science research: Justification and evaluation of knowledge production.
Bhattacharjee, P., & Ray, P. K. (2016). Simulation modelling and analysis of appointment system performance for multiple classes of patients in a hospital: a case study.
Calvi, K., Chung, S. H., Havens, R., Economou, M., & Kulkarni, R. (2019). Simulation study integrated with activity-based costing for an electronic device re-manufacturing system.
Coronel-Brizio, H. F., & Hernández-Montoya, A. R. (2010). The Anderson-Darling test of fit for the power-law distribution from left-censored samples.
Datta, P. P., & Roy, R. (2010). Cost modelling techniques for availability type service support contracts: A literature review and empirical study.
Díaz, H., Teixeira, A. P., & Soares, C. G. (2022). Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for ranking floating wind farm locations.
Durán, O., & Afonso, P. (2021). Physical asset risk management. In D. G. Garrido, & L. Almeida.
Durán, O., & Durán, P. A. (2018). Activity Based Costing for wastewater treatment and reuse under uncertainty: a fuzzy approach.
Durán, O., Afonso, P. S., & Durán, P. A. (2019). Spare parts cost management for long-term economic sustainability: Using fuzzy activity based LCC.
Esmalifalak, H., Albin, M. S., & Behzadpoor, M. (2015). A comparative study on the activity based costing systems: traditional, fuzzy and Monte Carlo approaches.
Fei, Z. Y., & Isa, C. R. (2010). Factors influencing activity-based costing success: a research framework.
Glasserman, P. (2004). Monte Carlo methods in financial engineering (Vol. 53). Springer.
Gosselin, M. (2006). A review of activity-based costing: technique, implementation, and consequences. In C. S. Chapman, A. G. Hopwood, & M. D. Shields (Eds.),
Govindan, K., & Jepsen, M. B. (2016). ELECTRE: a comprehensive literature review on methodologies and applications.
Grenyer, A., Erkoyuncu, J. A., Zhao, Y., & Roy, R. (2021). A systematic review of multivariate uncertainty quantification for engineering systems.
Gupta, A., & Maranas, C. D. (2003). Managing demand uncertainty in supply chain planning.
Hazır, Ö., & Ulusoy, G. (2020). A classification and review of approaches and methods for modeling uncertainty in projects.
Hellowell, M. (2013). PFI redux? Assessing a new model for financing hospitals.
Henri, J.-F., Boiral, O., & Roy, M.-J. (2016). Strategic cost management and performance: The case of environmental costs.
Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research.
Jahan-Shahi, H., Shayan, E., & Masood, S. (1999). Cost estimation in flat plate processing using fuzzy sets.
Jang, D., Kim, J., Kim, D., Han, W. B., & Kang, S. (2022). Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies.
Jiang, C., Xu, R., & Wang, P. (2023). Measuring effectiveness of movement-based three-way decision using fuzzy Markov model.
Jiao, L., Yang, H., Liu, Z., & Pan, Q. (2022). Interpretable fuzzy clustering using unsupervised fuzzy decision trees.
Jiménez, V., & Afonso, P. (2016). Risk assessment in costing systems using costing at risk (CaR): An application to the Coffee production cost. In
Jiménez, V., Duarte, C., & Afonso, P. (2015). Cost system under uncertainty: a case study in the imaging area of a hospital. In P. Cortés, E. Maeso-González & A. Escudero-Santana (Eds.),
Jorion, P. (2000).
Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today.
Kropivšek, J., Jošt, M., Grošelj, P., Kuzman, M. K., Kariž, M., Merela, M., & Bučar, D. G. (2021). Innovative model of the cost price calculation of products from invasive non-native wood species based on the ftdabc method.
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown.
Liu, W., Lai, Z., Bacsa, K., & Chatzi, E. (2022). Physics-guided Deep Markov Models for learning nonlinear dynamical systems with uncertainty.
Liu, Y., & Ralescu, D. A. (2017). Value-at-risk in uncertain random risk analysis.
Lueg, R., & Storgaard, N. (2017). The adoption and implementation of Activity-based Costing: a systematic literature review.
Magnacca, F., & Giannetti, R. (2023). Management accounting and new product development: a systematic literature review and future research directions.
Massey Junior, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit.
Mestre, A. M., Oliveira, M. D., & Barbosa-Póvoa, A. P. (2014). Location-allocation approaches for hospital network planning under uncertainty.
Mo, J., Wang, L., Qiu, Z., & Shi, Q. (2019). A nonprobabilistic structural damage identification approach based on orthogonal polynomial expansion and interval mathematics.
Myrodia, A., Kristjansdottir, K., & Hvam, L. (2017). Impact of product configuration systems on product profitability and costing accuracy.
Nachtmann, H., & Needy, K. L. (2001). Fuzzy activity based costing: a methodology for handling uncertainty in activity based costing systems.
Nachtmann, H., & Needy, K. L. (2003). Methods for handling uncertainty in activity based costing systems.
Namazi, M. (2009). Performance-focused ABC: a third generation of activity-based costing system.
Nguyen, T., Duong, Q. H., Nguyen, T. Van, Zhu, Y., & Zhou, L. (2022). Knowledge mapping of digital twin and physical internet in Supply Chain Management: a systematic literature review.
Oehmen, J., Locatelli, G., Wied, M., & Willumsen, P. (2020). Risk, uncertainty, ignorance and myopia: their managerial implications for B2B firms.
Ostadi, B., Mokhtarian Daloie, R., & Sepehri, M. M. (2019). A combined modelling of fuzzy logic and Time-Driven Activity-based Costing (TDABC) for hospital services costing under uncertainty.
Page, K., Barnett, A. G., Campbell, M., Brain, D., Martin, E., Fulop, N., & Graves, N. (2014). Costing the Australian National Hand Hygiene Initiative.
Parker, L. D. (2016). From scientific to activity based office management: a mirage of change.
Rinaldi, M., Murino, T., Gebennini, E., Morea, D., & Bottani, E. (2022). A literature review on quantitative models for supply chain risk management: can they be applied to pandemic disruptions?
RiskMetrics Group. (1999).
Rivero, E. J. R., & Emblemsvåg, J. (2007). Activity-based life-cycle costing in long-range planning.
Rodríguez, A. E., Pezzotta, G., Pinto, R., & Romero, D. (2022). A framework for cost estimation in product-service systems: a systems thinking approach.
Saaty, T. L. (2016). The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In S. Greco, M. Ehrgott & J. Figueira (Eds.),
Sarokolaei, M. A., Bahreini, M., & Bezenjani, F. P. (2013). Fuzzy Performance Focused Activity based Costing (PFABC).
Seppälä, J., Basson, L., & Norris, G. A. (2001). Decision analysis frameworks for life‐cycle impact assessment.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples).
Soto, A. R., Sobrino, A., Trillas, E., & Alsina, C. (2020). Reflections on an old problem: that of preserving the logical forms and symmetry.
Total Cost Management Division – CII. (2017).
Wang, J., Wang, Y., Zhang, Y., Liu, Y., & Shi, C. (2022). Life cycle dynamic sustainability maintenance strategy optimization of fly ash RC beam based on Monte Carlo simulation.
Wu, Z., & Zhang, R. (2022). Central limit theorem and moderate deviation principle for stochastic scalar conservation laws.
Yazdi, M., Kabir, S., & Walker, M. (2019). Uncertainty handling in fault tree based risk assessment: State of the art and future perspectives.
Zimlichman, E., Henderson, D., Tamir, O., Franz, C., Song, P., Yamin, C. K., Keohane, C., Denham, C. R., & Bates, D. W. (2013). Health Care–Associated Infections.
Zimmermann, H.-J. (2000). An application-oriented view of modeling uncertainty.
Submitted date:
11/21/2022
Accepted date:
09/18/2023