The automotive recall data search and its analysis applying machine learning
Bruno Fernandes Maione; Paulo Carlos Kaminski; Emilio Carlos Baraldi
Abstract
Supplementary Material
Keywords
References
Alppaydin, E. (2010).
Baraldi, E. C., & Kaminski, P. C. (2016).
Baraldi, E. C., & Kaminski, P. C. (2018). Reference model for the implementation of new assembly processes in the automotive sector.
Baraldi, E. C., & Kaminski, P. C. (2019). The recall and how the lessons learned can be used. In
Baranauskas, J. A. (2011).
Bates, H., Holweg, M., Lewis, M., & Oliver, N. (2007). Motor vehicle recalls: Trends, patterns and emerging issues.
Brasil. Ministério da Justiça. (2017).
Brasil. Ministério da Justiça. (2018a). Retrieved in 2018, July 12, from
Brasil. Ministério da Justiça. (2018b).
Choi, S. U., Lee, K. C., & Na, H. J. (2022). Exploring the deep neural network model’s potential to estimate abnormal audit fees.
Commission’s Safety Gate Team. (2021).
Committee on Commerce, Science, and Transportation. (2019).
Conner, S. L., & Wanasika, I. (2018). General motors: the ignition switch from hell.
Consumer Product Safety Commission - CPSC. (2018).
Eilert, M., Jayachandran, S., Kalaignanam, K., & Swartz, T. A. (2017). Does it pay to recall your product early? An empirical investigation in the automobile industry.
European Commission (2020).
European Commission. (2018a).
European Commission. (2018b).
European Union. (2002). Directive 2001/95/EC of the European parliament and of the Council.
Géron, A. (2019).
Gruber, G. E., Kaminski, P. C., & Baraldi, E. C. (2021). A comparison of motor vehicle recalls between Brazil and Germany: different approaches and results.
Haefele, S., & Westkamper, E. (2014). Identification of product safety-relevant tasks for global automotive manufacturers.
Hora, M., Bapuji, H., Roth, A.V. (2011). Safety hazard and time to recall: the role of recall strategy, product defect type, and supply chain player in the US toy industry.
Imielinski, T., & Mannila, H. (1996). A Database perspective on knowledge discovery.
Janssen, C., Sen, S., & Bhattacharya, C. B. (2015). Corporate crises in the age of corporate social responsibility.
Kalaignanam, K., Kushwaha, T., & Eilert, M. (2013). The impact of product recalls on future product reliability and future accidents: Evidence from the automobile industry.
Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine Learning: A review of classification and combining techniques.
Kumar, S., & Schmitz, S. (2011). Managing recalls in a consumer product supply chain – root cause analysis and measures to mitigate risks.
Mackelprang, A., Habermann, M., & Swink, M. (2015). How firm innovativeness and unexpected product reliability failures affect profitability.
Maione, B. F., Kaminski, P. C., & Baraldi, E. C. (2021a).
Maione, B. F., Kaminski, P. C., & Baraldi, E. C. (2021b). The different legislation of automotive recall and their implications for society.
Maione, B. F., Kaminski, P. C., & Baraldi, E. C. (2023). The automotive recall data search and its analysis applying machine learning [Supplemental material - Modeling Details and Code Availability].
Maiorescu, R. D. (2016). Crisis management at General Motors and Toyota: an analysis of gender-specific communication and media coverage.
McKinsey. (2020).
Medeiros, M. M., & Maçada, A. C. G. (2022). Competitive advantage of data-driven analytical capabilities: the role of big data visualization and of organizational agility.
National Highway Traffic Safety Administration - NHTSA. (2018a).
National Highway Traffic Safety Administration - NHTSA. (2018b).
ODI. (2021).
Rafique, D., & Velasco, L. (2018). Machine learning for network automation: overview, architecture, and applications [Invited Tutorial].
Recalls. (2018).
Rupp, N. G., & Taylor, C. R. (2002). Who initiates recalls and who cares? Evidence from the automobile industry.
Salazar-Reyna, R., Gonzalez-Aleu, F., Granda-Gutierrez, E. M. A., Diaz-Ramirez, J., Garza-Reyes, J. A., & Kumar, A. (2022). A systematic literature review of data science, data analytics and machine learning applied to healthcare engineering systems.
Scikit-Learn. (2021a).
Scikit-Learn. (2021b).
Scikit-Learn. (2021c).
Scikit-Learn. (2021d).
Scikit-Learn. (2021e).
Secretaria Nacional do Consumidor - SENACON. (2020a). Retrieved in 2020, November 27, from
Secretaria Nacional do Consumidor - SENACON. (2020b).
Silva, P.B., Andrade, M., Ferreira, S. (2020). Machine learning applied to road safety modeling: a systematic literature review.
Silver, N. (2013).
Slack, N., Chambers, S., & Johnston, R. (2010).
Wakefield, K. (2020).
Yu, B., & Malan, D. J. (2020).
Zhu, A. Y., von Zedtwitz, M., & Assimakopoulos, D. G. (2018). Responsible product innovation: putting safety first. In E. G. Carayannis (Ed.),
Submitted date:
11/26/2022
Accepted date:
04/21/2023