Fuzzy multi-objective optimization of the energy transition towards renewable energies with a mixed methodology
Federico Gabriel Camargo
Abstract
Keywords
References
Adesanya, A. A., Sidortsov, R. V., & Schelly, C. (2020). Act locally, transition globally: Grassroots resilience, local politics, and five municipalities in the United States with 100% renewable electricity.
Argentina. Cámara Argentina de Energías Renovables. (2021a).
Argentina. Ministerio de Economia. Secretaría de Energía. (2021b).
Arvesen, A., & Hertwich, E. G. (2015). More caution is needed when using life cycle assessment to determine energy return on investment (EROI).
Bogdanov, D., Ram, M., Aghahosseini, A., Gulagi, A., Oyewo, A. S., Child, M., Caldera, U., Sadovskaia, K., Farfan, J., De Souza Noel Simas Barbosa, L., Fasihi, M., Khalili, S., Traber, T., & Breyer, C. (2021). Low-cost renewable electricity as the key driver of the global energy transition towards sustainability.
Brundage, M. P., Lechevalier, D., & Morris, K. C. (2019). Toward standards-based generation of reusable life cycle inventory data models for manufacturing processes.
Camargo, F. G., Schweickardt, G. A., & Casanova, C. A. (2018). Maps of Intrinsic Cost (IC) in reliability problems of medium voltage power distribution systems through a Fuzzy multi-objective model.
Capellán-Pérez, I., de Castro, C., & Miguel González, L. J. (2019). Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies.
Falcone, P. M., Lopolito, A., & Sica, E. (2019). Instrument mix for energy transition: a method for policy formulation.
Hwang, C. L., Lai, Y. J., & Liu, T. Y. (1993). A new approach for multiple objective decision making.
Hwangbo, S., Heo, S., & Yoo, C. (2021). Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: towards decarbonization petrochemical industry.
Isoaho, K., & Karhunmaa, K. (2019). A critical review of discursive approaches in energy transitions.
Kadkol, A. A. (2021). Mathematical model of particle swarm optimization: numerical optimization problems. In B. A. Mercangöz (Eds.),
Kokkinos, K., Karayannis, V., & Moustakas, K. (2020). Circular bio-economy via energy transition supported by Fuzzy Cognitive Map modeling towards sustainable low-carbon environment.
Kosheleva, O., & Kreinovich, V. (2018).
Ligus, M., & Peternek, P. (2018). Determination of most suitable low-emission energy technologies development in Poland using integrated fuzzy AHP-TOPSIS method.
Lovins, A. (2017). Energy efficiency.
Miranda, V., Vigo, J., Carvalho, L., Marcelino, C., & Wanner, E. (2019, December). Epso enhanced by adaptive scaling and sub-swarms. In
Navas-Anguita, Z., Cruz, P. L., Martin-Gamboa, M., Iribarren, D., & Dufour, J. (2019). Simulation and life cycle assessment of synthetic fuels produced via biogas dry reforming and Fischer-Tropsch synthesis.
Ruggeri, E., & Garrido, S. (2021). More renewable power, same old problems? Scope and limitations of renewable energy programs in Argentina.
Shahzadi, G., Akram, M., & Al-Kenani, A. N. (2020). Decision-making approach under Pythagorean fuzzy Yager weighted operators.
Wang, Y., Zhang, N., Zhuo, Z., Kang, C., & Kirschen, D. (2018). Mixed-integer linear programming-based optimal configuration planning for energy hub: starting from scratch.
Zhao, N., & You, F. (2021). New York State’s 100% renewable electricity transition planning under uncertainty using a data-driven multistage adaptive robust optimization approach with machine-learning.
Submitted date:
11/09/2021
Accepted date:
04/20/2022