Goal programming associated with the non-archimedean infinitesimal: a case study applied in the agricultural sector
Fabiana Gomes dos Passos; Ademar Nogueira Nascimento; Cristiano Hora de Oliveira Fontes
Abstract
Keywords
References
Adler, N., & Golany, B. (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an application to Western Europe.
Adler, N., & Yazhemsky, E. (2010). Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction.
Aldamak, A., & Zolfaghari, S. (2017). Review of efficiency ranking methods in data envelopment analysis.
Almeida, A. T., Ferreira, R. J. P., & Cavalcante, C. A. (2015). A review of the use of multicriteria and multi-objective models in maintenance and reliability.
Amin, G. R., & Toloo, M. (2007). Finding the most efficient DMUs in DEA: an improved integrated model.
Andrade, R. M. D., Lee, S., Lee, P. T. W., Kwon, O. K., & Chung, H. M. (2019). Port efficiency incorporating service measurement variables by the BiO-MCDEA: Brazilian case.
Ângulo-Meza, L., González-Araya, M. G., Iriarte, A., Rebolledo-Leiva, R., & Mello, J. C. S. (2019). A multiobjective DEA model to assess the eco-efficiency of agricultural practices within the CF+DEA method.
Aydin, B., & Unakitan, G. (2018). Efficiency analysis in agricultural enterprises in Turkey: case of Thrace Region.
Bal, H., & Örkcü, H. H. (2007). A goal programming approach to weight dispersion in data envelopment analysis.
Bal, H., Örkcü, H. H., & Celebioglu, S. (2010). Improving the discrimination power and weights dispersion in the data envelopment analysis.
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating tech- nical and scale inefficiencies in data envelopment analysis.
Banker, R. D., Charnes, A., Cooper, W. W., Swarts, J., & Thomas, D. A. (1989). An introduction to data envelopment analysis with some of its models and their uses.
Borgheipour, H., Moghaddas, Z., Abbasi, M., & Abbaszadeh Tehrani, N. (2018). Application of DEA technique in SWOT analysis of oily sludge management using fuzzy data.
Caballero, R., Gómez, T., González, M., Muñoz, M. M., Rey, L., & Ruiz, F. (1997).
Cakmakci, M. (2009). Process improvement: performance analysis of the setup time reduction-SMED in the automobile industry.
Cao, J., Chen, G., Khoveyni, M., Eslami, R., & Yang, G. (2016). Specification of a performance indicator using the evidential-reasoning approach.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units.
Clímaco, J. C. N., Mello, J. C. C. B. S., & Ângulo-Meza, L. (2008). Performance measurement: from DEA to MOLP. In F. Adam (Eds.),
Daraio, C., & Simar, L. (2007).
Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978 e 2016.
Entani, T., Maeda, Y., & Tanaka, H. (2002). Dual models of interval DEA and its extensions to interval data.
Fanchon, P. (2003). Variable selection for dynamic measures of efficiency in the computer industry.
Ghasemi, M. R., Ignatius, J., & Emrouznejad, A. (2014). A bi-objective weighted model for improving the discrimination power in MCDEA.
Ghasemi, M. R., Ignatius, J., & Rezaee, B. (2019). Improving discriminating power in data envelopment models based on deviation variables framework.
Gontijo, T. S., Rodrigues, A. C., & Muylder, C. F. (2018). Incorporating managed preferences in the evaluation of public organizations efficiency: a DEA approach.
Hatami-Marbini, A., & Toloo, M. (2017). An extended multiple criteria data envelopment analysis model.
Instituto Brasileiro de Geografia e Estatística – IBGE. (2019).
Iqbal, N., & Sial, M. (2018). Semi-parametric analysis of agricultural production under dichotomy of inputs.
Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis.
Koopmans, L. H., Owen, D. B., & Rosenblatt, J. I. (1964). Confidence intervals for the coefficient of variation for the normal and log normal distributions.
Krcmar, E., & Van Kooter, G. C. (2008). Economic development prospects of forest-dependent communities: Analyzing trade-offs using a compromise-fuzzy programming framework.
Li, H., Xiong, J., Xie, J., Zhou, Z., & Zhang, J. (2019). A unified approach to efficiency decomposition for a two-stage network DEA model with application of performance evaluation in banks and sustainable product design.
Li, X. B., & Reeves, G. R. (1999). A multiple criteria approach to data envelopment analysis.
Marttunen, M., Lienert, J., & Belton, V. (2017). Structuring problems for Multi-Criteria Decision Analysis in practice: A literature review of method combinations.
Mello, J. C. C. B. S., Gomes, E. G., Meza, L. A., & Leta, F. R. (2008). DEA advanced models for geometric evaluation of used lathes.
Mota, T. R. A., & Meza, L. A. (2020). The use of DEA as a tool to evaluate public expenditure on education: an analysis of the cities of the state of Rio de Janeiro.
Nara, E. O. B., Sordi, D. C., Schaefer, J. L., Schreiber, J. N. C., Baierle, I. C., Sellitto, M. A., & Furtado, J. C. (2019). Prioritization of OHS key performance indicators that affecting business competitiveness: a demonstration based on MAUT and Neural Networks.
Passos, F. G., Fontes, C. H. O., & Do Nascimento, A. N. (2020). Efficiency evaluation of a mango exporter in the São Francisco Valley, Brazil: a model on data envelopment analysis.
Pastor, J. T., Ruiz, J. L., & Sirvent, I. (2002). A statistical test for nested radial DEA models.
Pereira, E. R., & & Mello, J. C. C. B. S. (2015). Smoothed frontier to determine a single set of weights in CCR models.
Podinovski, V. V., & Bouzdine-Chameeva, T. (2013). Weight restrictions and free production in data envelopment analysis.
Raheli, H., Rezaei, R. M., Jadidi, M. R., & Mobtaker, H. G. (2017). A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production.
Rubem, A. P. S. (2016).
Rubem, A. P. S., Mello, J. C. C. B. S., & Ângulo-Meza, L. (2017). A goal programming approach to solve the multiple criteria DEA model.
Ruggiero, J. (2005). Impact assessment of input omission on DEA.
Shen, W., Zhang, D., Liu, W., & Yang, G. (2016). Increasing discrimination of DEA evaluation by utilizing distances to anti-efficient frontiers.
Silva, A. F., Marins, F. A. S., & Dias, E. X. (2019). Improving the discrimination power with a new multi-criteria data envelopment model.
Silva, A. F., Marins, F. A. S., Tamura, P. M., & Dias, E. X. (2017a). Bi-Objective multiple criteria data envelopment analysis combined with the overall equipment effectiveness: an application in an automotive company.
Silva, J. S., Ferreira, M. O., & Lima, J. R. F. (2017b). Eficiência técnica dos produtores de manga do Vale do São Francisco.
Silva, J. L. M., & Sampaio, Y. S. B. (2002). A eficiência técnica dos colonos nos perímetros irrigados em Petrolina, Juazeiro: uma análise de modelos de fronteiras de produção.
Simar, L., & Wilson, P. W. (2001). Testing restrictions in nonparametric efficiency models.
Tan, X., Na, S., Guo, L., Chen, J., & Ruan, Z. (2019). External financing efficiency of rural revitalization listed companies in China: based on two-stage DEA and grey relational analysis.
Ueda, T., & Hoshiai, Y. (1997). Application of principal component analysis for parsimonious summarization of DEA inputs and/or outputs.
Wagner, J. M., & Shimshak, D. G. (2007). Stepwise selection of variables in data envelopment analysis: procedures and managerial perspectives.
Yamada, Y., Matui, T., & Sugiyam, M. (1994). New analysis of efficiency based on DEA.
Zare, K., Mehri-Tekmeh, J., & Karimi, S. (2015). A SWOT framework for analyzing the electricity supply chain using na integrated AHP methodology combined with fuzzy-Topsis.
Submitted date:
08/03/2021
Accepted date:
10/01/2021