Production
https://prod.org.br/article/doi/10.1590/0103-6513.20210060
Production
Thematic Section - Future of Energy-efficient Operations and Production Systems

Multicriteria evaluation of biomass residues in Portugal to second generation bioethanol production

Afonso V. P. Fontes; Isabel Maria João; João M. Silva

Downloads: 0
Views: 33

Abstract

Paper aims: This study evaluates agricultural and forest residues in Portugal to select the best candidates to use in second generation bioethanol (2G bioethanol) production.

Originality: The growth in the significance and level of decisions in biomass resources to 2G bioethanol and the involved complexity clearly encourage a research strategy to identify and select the wastes according to a multiplicity of criteria.

Research method: To address the key research objective this research used a multicriteria decision analysis method, MACBETH, to structuring the values of concern and identifying the key criteria, to evaluating the main agricultural and forest waste with respect to each criterion, to weighting the criteria and analyzing the biomass residues overall attractiveness and exploring the model´s results.

Main findings: As main findings of the study we found that Eucalyptus waste is the most promising forest residue to produce lignocellulosic bioethanol followed by Paulownia Tomentosa waste. The utilization of forest residues to the production of bioethanol in Portugal may represent in the future an important economic activity with huge environmental benefits.

Implications for theory and practice: The multicriteria approach addressed the research objectives and is simple to use with great potential for circular economy strategy issues. The step-by-step explanation of the model building makes the approach highly acceptable to other practitioners.

Keywords

2G bioethanol, Biomass residues, MCDA, MACBETH

References

Abreu, M. J. (2021). A cultura do Canhamo. Portugal: Direção Regional da Agricultura e Pescas do Norte, Ministério da Agricultura, Mar, Ambiente e Ordenamento do Território. Retrieved in 2021, April 3, from http://www.drapn.min-agricultura.pt/drapn/conteudos/producaoagricola/ACulturadoCanhamo.pdf

Abreu, M., Reis, A., Moura, P., Fernando, A. L., Luís, A., Quental, L., Patinha, P., & Gírio, F. (2020). Evaluation of the potential of biomass to energy in Portugal: conclusions from the CONVERTE Project. Energies, 13(4), 937. http://dx.doi.org/10.3390/en13040937.

Bambuparque. (2021). Retrieved in 2021, April 3, from https://bambuparque.pt/

Bana e Costa, C. A., & Vansnick, J.-C. (1994). MACBETH: an interactive path towards the construction of cardinal value. International Transactions in Operational Research, 1(4), 489-500. http://dx.doi.org/10.1016/0969-6016(94)90010-8.

Bana e Costa, C. A., & Vansnick, J.-C. (1999). The MACBETH approach: basic ideas, software, and an application. In N. Meskens & M. Roubens (Eds.), Advances in decision analysis (Mathematical Modelling: Theory and Applications, No. 4). Dordrecht: Springer. http://dx.doi.org/10.1007/978-94-017-0647-6_9.

Bana e Costa, C. A., Corrêa, E. C., de Corte, J.-M., & Vansnick, J.-C. (2002). Facilitating bid evaluation in public call for tenders: a socio-technical approach. Omega, 30(3), 227-242. http://dx.doi.org/10.1016/S0305-0483(02)00029-4.

Bana e Costa, C. A., de Corte, J.-M., & Vansnick, J.-C. (2011). MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique). In J. J. Cochran, L. A. Cox Junior, P. Keskinocak, J. P. Kharoufeh & J. C. Smith (Eds.), Wiley Encyclopedia of Operations Research and Management Science (pp. 2945-2950). New York: John Wiley & Sons. http://dx.doi.org/10.1002/9780470400531.eorms0970.

Bana e Costa, C. A., de Corte, J.-M., & Vansnick, J.-C. (2012). MACBETH. International Journal of Information Technology & Decision Making, 11(2), 359-387. http://dx.doi.org/10.1142/S0219622012400068.

Bana e Costa, C. A., Ensslin, L., Cornêa, É. C., & Vansnick, J.-C. (1999). Decision support systems in action: Integrated application in a multicriteria decision aid process. European Journal of Operational Research, 113(2), 315-335. http://dx.doi.org/10.1016/S0377-2217(98)00219-7.

Battista, F., Mancini, G., Ruggeri, B., & Fino, D. (2016). Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products. Renewable Energy, 88, 401-407. http://dx.doi.org/10.1016/j.renene.2015.11.055.

Bio-based Industries Consortium – BIC. (2018). Mapping the potential of Portugal for the bio-based industry. Brussels. Retrieved in 2021, April 3, from https://www.apren.pt/contents/publicationsothers/mapping-the-potential-of-portugal-for-the-bio-base-industry.pdf

Braide, W., Kanu, I. A., Oranusi, U. S., & Adeleye, S. A. (2016). Production of Bioethanol from agriculture waste. Journal of Fundamental and Applied Sciences, 8(2), 372-386. http://dx.doi.org/10.4314/jfas.v8i2.14.

Branco, R. H. R., Serafim, L. S., & Xavier, A. M. R. B. (2018). Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock. Fermentation, 5(1), 4. http://dx.doi.org/10.3390/fermentation5010004.

Brans, J. P. (1982). L’ Ingénierie de la décision: elaboration d’instrument d’aide à la décision: méthode PROMETHEE. In R. Nadeu & M. Landry (Eds.), L’aide à la décision: nature, instruments et perspectives d’avenir. Québec: Les Presses de l’Université Laval.

Burniol-Figols, A., Cenian, K., Skiadas, I. V., & Gavala, H. N. (2016). Integration of chlorogenic acid recovery and bioethanol production from spent coffee grounds. Biochemical Engineering Journal, 116, 54-64. http://dx.doi.org/10.1016/j.bej.2016.04.025.

Choi, S., Kim, Y. G., Jung, J. K., & Bae, H.-J. (2015). Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy, 93(Part 2), 1742-1747. http://dx.doi.org/10.1016/j.energy.2015.09.093.

Cutzu, R., & Bardi, L. (2017). Production of bioethanol from agricultural wastes using residual thermal energy of a cogeneration plant in the distillation phase. Fermentation, 3(2), 24. http://dx.doi.org/10.3390/fermentation3020024.

Domínguez, E., Romaní, A., Domingues, L., & Garrote, G. (2017). Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Applied Energy, 187, 777-789. http://dx.doi.org/10.1016/j.apenergy.2016.11.114.

Dong, C., Wang, Y., Zhang, H., & Leu, S.-Y. (2018). Feasibility of high concentration cellulosic bioethanol production from undetoxified whole Monterey pine slurry. Bioresource Technology, 250, 102-109. http://dx.doi.org/10.1016/j.biortech.2017.11.029. PMid:29161568.

Efeovbokhan, V. E., Egwari, L., Alagbe, E. E., Adeyemi, J. T., & Taiwo, O. S. (2019). Production of bioethanol from hybrid cassava pulp and peel using microbial and acid hydrolysis. BioResources, 14(2), 2596-2609. Retrieved in 2021, April 3, from https://bioresources.cnr.ncsu.edu/resources/production-of-bioethanol-from-hybrid-cassava-pulp-and-peel-using-microbial-and-acid-hydrolysis/

Elemike, E. E., Oseghale, O. C., & Okoye, A. C. (2015). Utilization of cellulosic cassava waste for bio-ethanol production. Journal of Environmental Chemical Engineering, 3(4, Part A), 2797-2800. http://dx.doi.org/10.1016/j.jece.2015.10.021.

European Union​​. (2014, August 13). Commission Regulation (EU) No. 868/2014 of 8 August 2014 amending the annexes to Regulation (EC) No. 1059/2003 of the European Parliament and of the Council on the establishment of a common classification of territorial units for statistics (NUTS). Official Journal of the European Union. Retrieved in 2021, August 17, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32014R0868

Ferreira, S., Monteiro, E., Brito, P., & Vilarinho, C. (2017). Biomass resources in Portugal: current status and prospects. Renewable & Sustainable Energy Reviews, 78, 1221-1235. http://dx.doi.org/10.1016/j.rser.2017.03.140.

Figueira, J. É., Greco, S., & Ehrogott, M. (2005). Multiple criteria decision analysis: state of the art surveys. New York: Springer. http://dx.doi.org/10.1007/b100605

Fonseca, J. E. (2020). Portuguese tech institute to produce advanced biofuels from tree-pruning-waste. Retrieved in 2021, April 3, from https://www.euractiv.com/section/agriculture-food/news/gerardo-portuguese-tech-institute-to-produce-advanced-biofuels-with-tree-pruning-waste/

Food and Agriculture Organization of the United Nations – FAO. (2017). Statistics. Retrieved in 2021, April 3, from http://www.fao.org/faostat/en/#data/QC

Food and Agriculture Organization of the United Nations – FAO. (2019). Statistics. Retrieved in 2021, April 3, from http://www.fao.org/faostat/en/#data/QC

Fundação Francisco Manuel dos Santos. PORDATA. (2021). What are NUTS? Retrieved in 2021, April 3, from https://www.pordata.pt/en/What+are+NUTS

Gírio, F. (2018). Contributos para uma visão estratégica do uso da biomassa para aplicações energéticas. In Ciclo de Conferências do Pinhal Interior. Sertã, Portugal: SerQ – Centro de Inovação e Competências da Floresta. Retrieved in 2021, April 3, from https://repositorio.lneg.pt/bitstream/10400.9/3160/1/Conferencia_Serta_Maio2018.pdf

Gonçalves, F. A., Silvino dos Santos, E., & Ribeiro de Macedo, G. (2015). Use of cultivars of low cost, agroindustrial and urban waste in the production of cellulosic ethanol in Brazil: a proposal to utilization of microdistillery. Renewable & Sustainable Energy Reviews, 50, 1287-1303. http://dx.doi.org/10.1016/j.rser.2015.05.047.

Handler, R. M., Shonnard, D. R., Griffing, E. M., Lai, A., & Palou-Rivera, I. (2016). Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks. Industrial & Engineering Chemistry Research, 55(12), 3253-3261. http://dx.doi.org/10.1021/acs.iecr.5b03215.

Hasanly, A., Talkhoncheh, M. K., & Alavijeh, M. K. (2018). Techno-economic assessment of bioethanol production from wheat straw: a case study of Iran. Clean Technologies and Environmental Policy, 20(2), 357-377. http://dx.doi.org/10.1007/s10098-017-1476-0.

Instituto da Conservação da Natureza e das Florestas – ICNF. (2019). IFN6 - 6º Inventário Florestal Nacional: principais resultados: relatório sumário. Retrieved in 2021, April 3, from https://www.fc.up.pt/pessoas/mccunha/Silvicultura/Aulas/estatisticas/IFN6-Principais-resultados-Jun2019.pdf

Instituto Nacional de Estatística – INE. (2019). Estatísticas agrícolas - 2018. Retrieved in 2021, April 3, from https://www.ine.pt/xurl/pub/358629204

Jahid, M., Gupta, A., & Sharma, D. K. (2018). Production of bioethanol from fruit wastes (banana, papaya, pineapple and mango peels) under milder conditions. Journal of Bioprocessing & Biotechniques, 8(3), 1000327. http://dx.doi.org/10.4172/2155-9821.1000327.

Jin, X., Song, J., & Liu, G.-Q. (2020). Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus. Energy, 190, 116395. http://dx.doi.org/10.1016/j.energy.2019.116395.

John, I., Pola, J., Thanabalan, M., & Appusamy, A. (2020). Bioethanol production from musambi peel by acid catalyzed steam pretreatment and enzymatic saccharification: optimization of delignification using taguchi design. Waste and Biomass Valorization, 11(6), 2631-2643. http://dx.doi.org/10.1007/s12649-018-00565-x.

Katsimpouras, C., Kalogiannis, K. G., Kalogianni, A., Lappas, A. A., & Topakas, E. (2017). Production of high concentrated cellulosic ethanol by acetone/water oxidized pretreated beech wood. Biotechnology for Biofuels, 10(1), 54. http://dx.doi.org/10.1186/s13068-017-0737-9. PMid:28265300.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives. preferences and value trade-offs. Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139174084.

Kuglarz, M., Alvarado-Morales, M., Karakashev, D., & Angelidaki, I. (2016). Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresource Technology, 200, 639-647. http://dx.doi.org/10.1016/j.biortech.2015.10.081. PMid:26551652.

Lara-Serrano, M., Sáez Angulo, F., Negro, M. J., Morales-delaRosa, S., Campos-Martin, J. M., & Fierro, J. L. G. (2018). Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-Pretreated Barley Straw. ACS Sustainable Chemistry & Engineering, 6(5), 7086-7095. http://dx.doi.org/10.1021/acssuschemeng.8b00953.

Monteiro, E., Mantha, V., & Rouboa, A. (2011). Prospective application of farm cattle manure for bioenergy production in Portugal. Renewable Energy, 36(2), 627-631. http://dx.doi.org/10.1016/j.renene.2010.08.035.

Morales, A., Gullón, B., Dávila, I., Eibes, G., Labidi, J., & Gullón, P. (2018). Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial Crops and Products, 124, 582-592. http://dx.doi.org/10.1016/j.indcrop.2018.08.032.

Organisation for Economic Co-operation and Development – OECD. (2018). Working party on biotechnology, nanotechnology and converging technologies realising the circular bioeconomy. Directorate for Science, Technology and Innovation Committee for Scientific and Technological Policy. Retrieved in 2021, April 3, from https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/STP/BNCT(2017)7/FINAL&docLanguage=En

Palacios, A. S., Ilyina, A., Ramos-González, R., Aguilar, C. N., Martínez-Hernández, J. L., Segura-Ceniceros, E. P., González, M. L. C., Aguilar, M., Ballesteros, M., Oliva, J. M. & Ruiz, H. A. (2019). Ethanol production from banana peels at high pretreated substrate loading: comparison of two operational strategies. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-019-00562-7

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. http://dx.doi.org/10.5194/hess-11-1633-2007.

Pinho, J. (2014). Forest planning in Portugal. In F. Reboredo (Eds.), Forest context and policies in portugal, world forests (Vol. 19, pp. 155-183). Switzerland: Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-08455-8_6.

Portugal, Direção Geral de Energia e Geologia – DGEG. (2021). Áreas sectoriais-energia-energias renováveis e sustentabilidade. Retrieved in 2021, April 3, from https://www.dgeg.gov.pt/pt/areas-setoriais/energia/energias-renovaveis-e-sustentabilidade/

Prasoulas, G., Gentikis, A., Konti, A., Kalantzi, S., Kekos, D., & Mamma, D. (2020). Bioethanol production from food waste applying the multienzyme system produced on-site by Fusarium oxysporum F3 and mixed microbial cultures. Fermentation, 6(2), 39. http://dx.doi.org/10.3390/fermentation6020039.

Romaní, A., Larramendi, A., Yáñez, R., Cancela, Á., Sánchez, Á., Teixeira, J. A., & Domingues, L. (2019). Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Industrial Crops and Products, 132, 327-335. http://dx.doi.org/10.1016/j.indcrop.2019.02.040.

Rosa, M. F. (2006). Situação actual dos biocombustíveis e perspectivas futuras. Gazeta de Física, 29(1-2), 42-47. Retrieved in 2021, April 3, from https://www.spf.pt/magazines/GFIS/76/article/477/pdf

Roy, B. (1968). Classement et choix en presence de points de vue multiples. Revue Française d’informatique et de Recherche Opérationnelle, 2(6), 57-75. Retrieved in 2021, April 3, from http://www.numdam.org/article/RO_1968__2_1_57_0.pdf

Saaty, T. L. (1987). The analytic hierarchy process: what it is and how it is used. Mathematical Modelling, 9(3-5), 161-176. http://dx.doi.org/10.1016/0270-0255(87)90473-8.

Saini, S., Chutani, P., Kumar, P., & Sharma, K. K. (2020). Development of an eco-friendly deinking process for the production of bioethanol using diverse hazardous paper wastes. Renewable Energy, 146, 2362-2373. http://dx.doi.org/10.1016/j.renene.2019.08.087.

Sarbishei, S., Goshadrou, A., & Hatamipour, M. S. (2020). Mild sodium hydroxide pretreatment of tobacco product waste to enable efficient bioethanol production by separate hydrolysis and fermentation. Biomass Conversion and Biorefinery. http://dx.doi.org/10.1007/s13399-020-00644-x.

Song, Y., Lee, Y. G., Cho, E. J., & Bae, H.-J. (2020). Production of xylose, xylulose, xylitol, and bioethanol from waste bamboo using hydrogen peroxide-acetic acid pretreatment. Fuel, 278, 118247. http://dx.doi.org/10.1016/j.fuel.2020.118247.

Sophanodorn, K., Unpaprom, Y., Whangchai, K., Homdoung, N., Dussadee, N., & Ramaraj, R. (2020). Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00992-8.

Stex. (2020). Smart technologies, by environment xperts. Retrieved in 2021, April 3, from https://www.stex.pt/

Trotta, G. (2019). Assessing energy efficiency improvements, energy dependence, and CO2 emissions in the European Union using a decomposition method Energy Efficiency. Energy Efficiency, 12(7), 1873-1890. http://dx.doi.org/10.1007/s12053-019-09818-7.

Vincke, P. H. (1989). L’aide multicritère à la dècision. Bruxelles: Éditions de l’Université de Bruxelles.

Yuan, Z., Wen, Y., Kapu, N. S., Beatson, R. & Martinez, D. M. (2017). A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnology for Biofuels, 10, 38. https://doi.org/10.1186/s13068-017-0723-2.

Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N. & Faruq, G. (2016). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 66, 751-774. https://doi.org/10.1016/j.rser.2016.08.038.
 


Submitted date:
05/31/2021

Accepted date:
08/30/2021

614e1664a95395302756fb24 production Articles
Links & Downloads

Production

Share this page
Page Sections