A comparative study of forecasting methods using real-life econometric series data
Cláudia Eliane da Matta; Natália Maria Puggina Bianchesi; Milena Silva de Oliveira; Pedro Paulo Balestrassi; Fabiano Leal
Abstract
Keywords
References
Ballabio, C., Lugato, E., Fernandez-Ugalde, O., Orgiazzi, A., Jones, A., Borrelli, P., Montanarella, L., & Panagos, P. (2019). Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression.
Bandeira, S. G., Alcalá, S. G. S., Vita, R. O., Barbosa, T. M. G. A. (2020). Comparison of selection and combination strategies for demand forecasting methods.
Brooks, C., Hoepner, A. G. F., Mcmillan, D., Vivian, A., & Wese Simen, C. (2019). Financial data science: the birth of a new financial research paradigm complementing econometrics?
Büyükşahin, Ü. Ç., & Ertekin, Ş. (2019). Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition.
Chen, J., Jiang, F., Li, H., & Xu, W. (2016). Chinese stock market volatility and the role of U.S. economic variables.
Chen, Z., Lin, X., Xiong, C., & Chen, N. (2020). Modeling the relationship of precipitation and water level using grid precipitation products with a neural network model.
dos Santos, C. H., Lima, R. D. C., Leal, F., de Queiroz, J. A., Balestrassi, P. P., & Montevechi, J. A. B. (2020). A decision support tool for operational planning: a Digital Twin using simulation and forecasting methods.
Dritsakis, N., & Klazoglou, P. (2018). Forecasting unemployment rates in USA using Box-Jenkins methodology.
Feng, X., Ma, G., Su, S.-F., Huang, C., Boswell, M. K., & Xue, P. (2020). A multi-layer perceptron approach for accelerated wave forecasting in Lake Michigan.
FRED. (2021).
Fu, Q., Shen, W., Wei, X., Zheng, P., Xin, H., & Zhao, C. (2019). Prediction of the diet nutrients digestibility of dairy cows using Gaussian process regression.
Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning.
Gupta, P., Batra, S. S., & Jayadeva, (2017). Sparse short-term time series forecasting models via minimum model complexity.
Khraisha, T. (2020). Complex economic problems and fitness landscapes: Assessment and methodological perspectives.
Konny, C. (2020). Modernizing data collection for the Consumer Price Index.
Li, Y., Liu, R. W., Liu, Z., & Liu, J. (2019). Similarity grouping-guided neural network modeling for maritime time series prediction.
Madhiarasan, M., & Deepa, S. (2017). Comparative analysis on hidden neurons estimation in multi layer perceptron neural networks for wind speed forecasting.
Montgomery, D. C., Jennings, C., & Kulahci, M. (2015).
Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconmic time series.
Nourani, V., Paknezhad, N. J., & Tanaka, H. (2021). Prediction Interval Estimation Methods for Artificial Neural Network (ANN)-based modeling of the hydro-climatic processes, a review.
Puchalsky W., Ribeiro, G. T., da Veiga, C. P., Freire, R. Z., & Santos Coelho, L. (2018). Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimisation: an analysis of the soybean sack price and perishable products demand.
Qi, M., & Zhang, G. P. (2008). Trend time-series modeling and forecasting with neural networks.
Rani R, H. J., & Victoire T, A. A. (2018). Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimiser.
Rasmussen, C. E., & Nickisch, H. (2010). Gaussian Processes for Machine Learning (GPML) Toolbox.
Robinson, L., Schulz, J., Ragnedda, M., Pait, H., Kwon, K. H., & Khilnani, A. (2021). An Unequal Pandemic: vulnerability and COVID-19.
Sadeghi, G., Pisello, A. L., Nazari, S., Jowzi, M., & Shama, F. (2021). Empirical data-driven multi-layer perceptron and radial basis function techniques in predicting the performance of nanofluid-based modified tubular solar collectors.
Safari, M.-J.-S., Aksoy, H., & Mohammadi, M. (2016). Artificial neural network and regression models for flow velocity at sediment incipient deposition.
Safi, S. K. (2016). A comparison of artificial neural network and time series models for forecasting GDP in Palestine.
Samadianfard, S., Hashemi, S., Kargar, K., Izadyar, M., Mostafaeipour, A., Mosavi, A., Nabipour, N., & Shamshirband, S. (2020). Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimisation algorithm.
Smets, F., & Wouters, R. (2005). Comparing shocks and frictions in US and euro area business cycles: a Bayesian DSGE approach.
Sun, S., Lu, H., Tsui, K.-L., & Wang, S. (2019). Nonlinear vector auto-regression neural network for forecasting air passenger flow.
Torra, S., & Claveria, O. (2017).
Wu, R., & Wang, B. (2018). Gaussian process regression method for forecasting of mortality rates.
Yan, J., Li, K., Bai, E., Yang, Z., & Foley, A. (2016). Time series wind power forecasting based on variant Gaussian process and TLBO.
Yu, R., Leung, P., & Bienfang, P. (2006). Predicting shrimp growth: artificial neural network versus nonlinear regression models.
Zhang, X., Liu, Y., Yang, M., Zhang, T., Young, A. A., & Li, X. (2013). Comparative study of four time series methods in forecasting typhoid fever incidence in China.
Zhang, X., Xue, T., & Eugene Stanley, H. (2019). Comparison of econometric models and artificial neural networks algorithms for the prediction of baltic dry index.
Submitted date:
05/15/2021
Accepted date:
09/14/2021