Production
https://prod.org.br/article/doi/10.1590/0103-6513.20210038
Production
Thematic Section - Future of Energy-efficient Operations and Production Systems

Permeability evaluation of Industry 4.0 technologies in cloud-based energy management systems environments - Energy Cloud

Jones Luís Schaefer; Patrícia Stefan de Carvalho; Augusto Ruhoff; Johanna Dreher Thomas; Julio Cezar Mairesse Siluk

Downloads: 1
Views: 48

Abstract

   Paper aims: This article aims to diagnose the penetration level of Industry 4.0 technologies in cloud-based energy management systems, the Energy Cloud.

Originality: The energy sector is undergoing a technological evolution driven by the integration of Industry 4.0 technologies with energy management systems, making relevant the study of the permeability of these technologies with energy companies.

Research method: The research used two articles on Energy Cloud as a theoretical basis and a data collection carried out with managers of renewable energy companies, with the data being analyzed using the MONNA software.

Main findings: The results show that there is a greater understanding and use of the Internet of Things and Sensors technologies to the detriment of Cloud Computing and Big Data.

Implications for theory and practice: The article shows that there is a need for managers to seek greater familiarization, especially with Cloud Computing and Big Data.

Keywords

Energy management, Energy Cloud, Industry 4.0, MONNA

References

Abed, S., Al-Shayeji, M., & Ebrahim, F. (2019). A secure and energy-efficient platform for the integration of Wireless Sensor Networks and Mobile Cloud Computing. Computer Networks, 165, 106956. http://dx.doi.org/10.1016/j.comnet.2019.106956.

Ahmad, T., Zhang, H., & Yan, B. (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustainable Cities and Society, 55, 102052. https://doi.org/10.1016/j.scs.2020.102052.

Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing. Manufacturing Letters, 15, 60-63. http://dx.doi.org/10.1016/j.mfglet.2018.02.011.

Al Faruque, M. A., & Vatanparvar, K. (2016). Energy Management-as-a-Service over Fog Computing Platform. IEEE Internet of Things Journal, 3(2), 161-169. http://dx.doi.org/10.1109/JIOT.2015.2471260.

Baierle, I. C., Schaefer, J. L., Sellitto, M. A., Fava, L. P., Furtado, J. C., & Nara, E. O. B. (2020). MOONA software for survey classification and evaluation of criteria to support decision-making for properties portfolio. International Journal of Strategic Property Management, 24(4), 226-236. http://dx.doi.org/10.3846/ijspm.2020.12338.

Baracho, R., Cunha, I., & Pereira Junior, M. L. (2018). Information modeling and information retrieval for the Internet of things (IoT) in Buildings. Journal of Systemics, Cybernetics and Informatics, 16(2), 85-91.

Brauers, W. K. (2002). The multiplicative representation for multiple objectives optimization with an application for arms procurement. Naval Research Logistics, 49(4), 327-340. http://dx.doi.org/10.1002/nav.10014.

Brauers, W. K. M., Ginevičius, R., & Podvezko, V. (2010). Lietuvos regioninės plėtros daugiaaspektis vertinimas moora metodu. Technological and Economic Development of Economy, 16(4), 613-640. http://dx.doi.org/10.3846/tede.2010.38.

Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35, 445-469.

Calic, G., & Ghasemaghaei, M. (2020). Big data for social benefits: Innovation as a mediator of the relationship between big data and corporate social performance. Journal of Business Research, 131, 391-401. http://dx.doi.org/10.1016/j.jbusres.2020.11.003.

Carvalho, P. S., Siluk, J. C. M., Schaefer, J. L., Pinheiro, J. R., & Schneider, P. S. (2021). Proposal for a new layer for energy cloud management: the regulatory layer. International Journal of Energy Research, 45(7), 9780-9799. https://doi.org/10.1002/er.6507.

Chen, Y.-Y., Lin, Y.-H., Kung, C.-C., Chung, M.-H., & Yen, I.-H. (2019). Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes. Sensors (Basel, Switzerland), 19(9), 2047. http://dx.doi.org/10.3390/s19092047. PMid:31052502.

da Costa, M. B., dos Santos, L. M. A. L., Schaefer, J. L., Baierle, I. C., & Nara, E. O. B. (2019). Industry 4.0 technologies basic network identification. Scientometrics, 121(2), 977-994. http://dx.doi.org/10.1007/s11192-019-03216-7.

de Moraes, J., Schaefer, J. L., Schreiber, J. N. C., Thomas, J. D., & Nara, E. O. B. (2019). Algorithm applied: attracting MSEs to business associations. Journal of Business and Industrial Marketing. http://dx.doi.org/10.1108/JBIM-09-2018-0269.

Delgosha, M. S., Hajiheydari, N., & Talafidaryani, M. (2021). Discovering IoT implications in business and management: a computational thematic analysis. Technovation, 102236. In press. http://dx.doi.org/10.1016/j.technovation.2021.102236.

Giordano, A., Mastroianni, C., Menniti, D., Pinnarelli, A., & Sorrentino, N. (2019). An energy community implementation: the unical energy cloud. Electronics (Switzerland), 8(12), 1517. http://dx.doi.org/10.3390/electronics8121517.

Govindarajan, R., Meikandasivam, S., & Vijayakumar, D. (2019). Cloud computing based smart energy monitoring system. International Journal of Scientific and Technology Research, 8(10), 886-890.

Guenduez, A. A., Mettler, T., & Schedler, K. (2020). Technological frames in public administration: what do public managers think of big data? Government Information Quarterly, 37(1), 101406. http://dx.doi.org/10.1016/j.giq.2019.101406.

Guo, Y., & Zhao, C. (2018). Islanding-aware robust energy management for microgrids. IEEE Transactions on Smart Grid, 9(2), 1301-1309. http://dx.doi.org/10.1109/TSG.2016.2585092.

Hakimi, S. M., & Hasankhani, A. (2020). Intelligent energy management in off-grid smart buildings with energy interaction. Journal of Cleaner Production, 244, 118906. http://dx.doi.org/10.1016/j.jclepro.2019.118906.

Howell, S. K., Wicaksono, H., Yuce, B., McGlinn, K., & Rezgui, Y. (2019). User centered neuro-fuzzy energy management through semantic-based optimization. IEEE Transactions on Cybernetics, 49(9), 3278-3292. http://dx.doi.org/10.1109/TCYB.2018.2839700. PMid:30028719.

Illa, P. K., & Padhi, N. (2018). Practical guide to smart factory transition using IoT, big data and edge analytics. IEEE Access : Practical Innovations, Open Solutions, 6, 55162-55170. http://dx.doi.org/10.1109/ACCESS.2018.2872799.

Ji, Y. (2021). Application of fault detection using distributed sensors in smart cities. Physical Communication, 46, 101182. http://dx.doi.org/10.1016/j.phycom.2020.101182.

Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., & Noh, S. D. (2016). Smart manufacturing: past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing - Green Technology, 3(1), 111-128. https://doi.org/10.1007/s40684-016-0015-5.

Kulkarni, N., Lalitha, S. V. N. L., & Deokar, S. A. (2019). Real time control and monitoring of grid power systems using cloud computing. Iranian Journal of Electrical and Computer Engineering, 9(2), 941-949. http://dx.doi.org/10.11591/ijece.v9i2.pp941-949.

Lawrence, M., & Vrins, J. (2018). Energy Cloud 4.0 - Capturing Business Value through Disruptive Energy Platforms (pp. 1-46). USA: Guidehouse Consulting.

Liu, Y., Yang, C., Jiang, L., Xie, S., & Zhang, Y. (2019). Intelligent edge computing for iot-based energy management in smart cities. IEEE Network, 33(2), 111-117. http://dx.doi.org/10.1109/MNET.2019.1800254.

Ma, Y., Zhao, F., Zhou, X., & Gao, Z. (2018). Summary of cloud computing technology in smart grid. Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018 (pp. 253-258). USA: IEEE. http://dx.doi.org/10.1109/ICMA.2018.8484418

Maatoug, A., Belalem, G., & Mahmoudi, S. (2019). Fog computing framework for location-based energy management in smart buildings. Multiagent and Grid Systems, 15(1), 39-56. http://dx.doi.org/10.3233/MGS-190301.

Mell, P., & Grance, T. (2011). The NIST Definition of Cloud Computing Recommendations of the National Institute of Standards and Technology. Retrieved in 2021, April 30, from http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf

Natarajan, G., & Ashok Kumar, L. (2017). Implementation of IoT based smart village for the rural development. International Journal of Mechanical Engineering and Technology, 8(8), 1212-1222.

Radenković, M., Bogdanović, Z., Despotović-Zrakić, M., Labus, A., & Lazarević, S. (2020). Assessing consumer readiness for participation in IoT-based demand response business models. Technological Forecasting and Social Change, 150, 119715. http://dx.doi.org/10.1016/j.techfore.2019.119715.

Rafindadi, A. A., & Mika’Ilu, A. S. (2019). Sustainable energy consumption and capital formation: Empirical evidence from the developed financial market of the United Kingdom. Sustainable Energy Technologies and Assessments, 35, 265-277. http://dx.doi.org/10.1016/j.seta.2019.07.007.

Schaefer, J. L., Baierle, I. C., Sellitto, M. A., Siluk, J. C. M., Furtado, J. C., & Nara, E. O. B. (2020a). Competitiveness scale as a basis for Brazilian Small and Medium-Sized Enterprises. Engineering Management Journal, 1-17. http://dx.doi.org/10.1080/10429247.2020.1800385.

Schaefer, J. L., Siluk, J. C. M., Carvalho, P. S., Renes Pinheiro, J., & Schneider, P. S. (2020b). Management Challenges and opportunities for energy cloud development and diffusion. Energies, 13(16), 4048. http://dx.doi.org/10.3390/en13164048.

Sequeira, H., Carreira, P., Goldschmidt, T., & Vorst, P. (2014). Energy cloud: Real-time cloud-native energy management system to monitor and analyze energy consumption in multiple industrial sites. In Proceedings - 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC 2014 (pp. 529-534). USA: IEEE. http://dx.doi.org/10.1109/UCC.2014.79.

Singh, P., Dhundhara, S., Verma, Y. P., & Tayal, N. (2021). Optimal battery utilization for energy management and load scheduling in smart residence under demand response scheme. Sustainable Energy, Grids and Networks, 26, 100432. http://dx.doi.org/10.1016/j.segan.2021.100432.

Sivapragash, C., Padmanaban, S., Eklas, H., Holm-Nielsen, J. B., & Hemalatha, R. (2019). Location-based optimized service selection for data management with cloud computing in smart grids. Energies, 12(23). http://dx.doi.org/10.3390/en12234517.

Tsuchiya, Y., & Hiramoto, N. (2018). Measuring consensus and dissensus: a generalized index of disagreement using conditional probability. Information Sciences, 439-440, 50-60. http://dx.doi.org/10.1016/j.ins.2018.02.003.

Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of Industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805. http://dx.doi.org/10.1155/2016/3159805.

Wang, Y., Huang, Y., Wang, Y., Zeng, M., Li, F., Wang, Y., & Zhang, Y. (2018). Energy management of smart micro-grid with response loads and distributed generation considering demand response. Journal of Cleaner Production, 197, 1069-1083. http://dx.doi.org/10.1016/j.jclepro.2018.06.271.

Yang, C., & Ming, H. (2021). Detection of sports energy consumption based on IoTs and cloud computing. Sustainable Energy Technologies and Assessments, 46, 101224. http://dx.doi.org/10.1016/j.seta.2021.101224.

Yassine, A., Singh, S., Hossain, M. S., & Muhammad, G. (2019). IoT big data analytics for smart homes with fog and cloud computing. Future Generation Computer Systems, 91, 563-573. http://dx.doi.org/10.1016/j.future.2018.08.040.

Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: from big data to big insights. Renewable & Sustainable Energy Reviews, 56, 215-225. http://dx.doi.org/10.1016/j.rser.2015.11.050.
 


Submitted date:
04/30/2021

Accepted date:
07/13/2021

611ebda0a9539517184d9bd3 production Articles
Links & Downloads

Production

Share this page
Page Sections