Permeability evaluation of Industry 4.0 technologies in cloud-based energy management systems environments - Energy Cloud
Jones Luís Schaefer; Patrícia Stefan de Carvalho; Augusto Ruhoff; Johanna Dreher Thomas; Julio Cezar Mairesse Siluk
Abstract
Keywords
References
Abed, S., Al-Shayeji, M., & Ebrahim, F. (2019). A secure and energy-efficient platform for the integration of Wireless Sensor Networks and Mobile Cloud Computing.
Ahmad, T., Zhang, H., & Yan, B. (2020). A review on renewable energy and electricity requirement forecasting models for smart grid and buildings.
Ahuett-Garza, H., & Kurfess, T. (2018). A brief discussion on the trends of habilitating technologies for Industry 4.0 and Smart manufacturing.
Al Faruque, M. A., & Vatanparvar, K. (2016). Energy Management-as-a-Service over Fog Computing Platform.
Baierle, I. C., Schaefer, J. L., Sellitto, M. A., Fava, L. P., Furtado, J. C., & Nara, E. O. B. (2020). MOONA software for survey classification and evaluation of criteria to support decision-making for properties portfolio.
Baracho, R., Cunha, I., & Pereira Junior, M. L. (2018). Information modeling and information retrieval for the Internet of things (IoT) in Buildings.
Brauers, W. K. (2002). The multiplicative representation for multiple objectives optimization with an application for arms procurement.
Brauers, W. K. M., Ginevičius, R., & Podvezko, V. (2010). Lietuvos regioninės plėtros daugiaaspektis vertinimas moora metodu.
Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy.
Calic, G., & Ghasemaghaei, M. (2020). Big data for social benefits: Innovation as a mediator of the relationship between big data and corporate social performance.
Carvalho, P. S., Siluk, J. C. M., Schaefer, J. L., Pinheiro, J. R., & Schneider, P. S. (2021). Proposal for a new layer for energy cloud management: the regulatory layer.
Chen, Y.-Y., Lin, Y.-H., Kung, C.-C., Chung, M.-H., & Yen, I.-H. (2019). Design and implementation of cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge analytics in demand-side management for smart homes.
da Costa, M. B., dos Santos, L. M. A. L., Schaefer, J. L., Baierle, I. C., & Nara, E. O. B. (2019). Industry 4.0 technologies basic network identification.
de Moraes, J., Schaefer, J. L., Schreiber, J. N. C., Thomas, J. D., & Nara, E. O. B. (2019). Algorithm applied: attracting MSEs to business associations.
Delgosha, M. S., Hajiheydari, N., & Talafidaryani, M. (2021). Discovering IoT implications in business and management: a computational thematic analysis.
Giordano, A., Mastroianni, C., Menniti, D., Pinnarelli, A., & Sorrentino, N. (2019). An energy community implementation: the unical energy cloud.
Govindarajan, R., Meikandasivam, S., & Vijayakumar, D. (2019). Cloud computing based smart energy monitoring system.
Guenduez, A. A., Mettler, T., & Schedler, K. (2020). Technological frames in public administration: what do public managers think of big data?
Guo, Y., & Zhao, C. (2018). Islanding-aware robust energy management for microgrids.
Hakimi, S. M., & Hasankhani, A. (2020). Intelligent energy management in off-grid smart buildings with energy interaction.
Howell, S. K., Wicaksono, H., Yuce, B., McGlinn, K., & Rezgui, Y. (2019). User centered neuro-fuzzy energy management through semantic-based optimization.
Illa, P. K., & Padhi, N. (2018). Practical guide to smart factory transition using IoT, big data and edge analytics.
Ji, Y. (2021). Application of fault detection using distributed sensors in smart cities.
Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., & Noh, S. D. (2016). Smart manufacturing: past research, present findings, and future directions.
Kulkarni, N., Lalitha, S. V. N. L., & Deokar, S. A. (2019). Real time control and monitoring of grid power systems using cloud computing.
Lawrence, M., & Vrins, J. (2018).
Liu, Y., Yang, C., Jiang, L., Xie, S., & Zhang, Y. (2019). Intelligent edge computing for iot-based energy management in smart cities.
Ma, Y., Zhao, F., Zhou, X., & Gao, Z. (2018). Summary of cloud computing technology in smart grid.
Maatoug, A., Belalem, G., & Mahmoudi, S. (2019). Fog computing framework for location-based energy management in smart buildings.
Mell, P., & Grance, T. (2011).
Natarajan, G., & Ashok Kumar, L. (2017). Implementation of IoT based smart village for the rural development.
Radenković, M., Bogdanović, Z., Despotović-Zrakić, M., Labus, A., & Lazarević, S. (2020). Assessing consumer readiness for participation in IoT-based demand response business models.
Rafindadi, A. A., & Mika’Ilu, A. S. (2019). Sustainable energy consumption and capital formation: Empirical evidence from the developed financial market of the United Kingdom.
Schaefer, J. L., Baierle, I. C., Sellitto, M. A., Siluk, J. C. M., Furtado, J. C., & Nara, E. O. B. (2020a). Competitiveness scale as a basis for Brazilian Small and Medium-Sized Enterprises.
Schaefer, J. L., Siluk, J. C. M., Carvalho, P. S., Renes Pinheiro, J., & Schneider, P. S. (2020b). Management Challenges and opportunities for energy cloud development and diffusion.
Sequeira, H., Carreira, P., Goldschmidt, T., & Vorst, P. (2014). Energy cloud: Real-time cloud-native energy management system to monitor and analyze energy consumption in multiple industrial sites. In
Singh, P., Dhundhara, S., Verma, Y. P., & Tayal, N. (2021). Optimal battery utilization for energy management and load scheduling in smart residence under demand response scheme.
Sivapragash, C., Padmanaban, S., Eklas, H., Holm-Nielsen, J. B., & Hemalatha, R. (2019). Location-based optimized service selection for data management with cloud computing in smart grids.
Tsuchiya, Y., & Hiramoto, N. (2018). Measuring consensus and dissensus: a generalized index of disagreement using conditional probability.
Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of Industrie 4.0: an outlook.
Wang, Y., Huang, Y., Wang, Y., Zeng, M., Li, F., Wang, Y., & Zhang, Y. (2018). Energy management of smart micro-grid with response loads and distributed generation considering demand response.
Yang, C., & Ming, H. (2021). Detection of sports energy consumption based on IoTs and cloud computing.
Yassine, A., Singh, S., Hossain, M. S., & Muhammad, G. (2019). IoT big data analytics for smart homes with fog and cloud computing.
Zhou, K., Fu, C., & Yang, S. (2016). Big data driven smart energy management: from big data to big insights.
Submitted date:
04/30/2021
Accepted date:
07/13/2021