Production
https://prod.org.br/article/doi/10.1590/0103-6513.20210007
Production
Thematic Section - Advances in Analytic Hierarchy Process

AHP in nonlinear scaling: from two-envelope problem to modeling by predictors

Stan Lipovetsky

Downloads: 0
Views: 752

Abstract

Paper aims: Extending the AHP abilities to new areas from explaining the famous Two-Envelope paradox to finding priorities as functions of auxiliary variables is suggested.

Originality: The proposed innovative and advantageous approach permits to find the non-constant priorities via regression modeling for the exponential or Cobb-Douglas production functions.

Research method: Transforming the ratio scale into the additive or logarithmic scales, which correspond to the multiplicative utility function, opens new possibilities in the multiple-criteria decision making.

Main findings: Two-Envelop problem is resolved, priority vectors are presented as functions by auxiliary variables, preferences are predicted and profiled by predictors.

Implications for theory and practice: The suggested techniques open novel possibilities of multiple-criteria decisions helping to researchers and managers to discover useful features of priority behavior due to the demographic, socio-economic, or technical properties of the compared alternatives, and to find optimal solutions for individual customers.

Keywords

AHP. Two-envelope paradox. Nonlinear scaling. Multiplicative utility. Priority as function. Exponential function. Cobb-Douglas production function.

References

Abbott, D., Davis, B. R., & Parrondo, J. M. (2010). The two-envelope problem revisited. Fluctuation and Noise Letters, 9(1), 1-8. http://dx.doi.org/10.1142/S0219477510000022.

Albers, C. J., Kooi, B. P., & Schaafsma, W. (2005). Trying to resolve the two-envelope problem. Synthese, 145(1), 89-109. http://dx.doi.org/10.1007/s11229-004-7665-5.

Egozcue, M., & Fuentes García, L. (2015). An optimal threshold strategy in the two-envelope problem with partial information. Journal of Applied Probability, 52(1), 298-304. http://dx.doi.org/10.1239/jap/1429282624.

Ishizaka, A., Tasiou, M., & Martínez, L. (2020). Analytic hierarchy process-fuzzy sorting: An analytic hierarchy process–based method for fuzzy classification in sorting problems. The Journal of the Operational Research Society, 71(6), 928-947. http://dx.doi.org/10.1080/01605682.2019.1595188.

Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value tradeoffs. New York: Cambridge University Press. http://dx.doi.org/10.1017/CBO9781139174084.

Lee, C. (2013). The Two-envelope Paradox: asymmetric cases. Mind, 122(485), 1-26. http://dx.doi.org/10.1093/mind/fzt023.

Lipovetsky, S. (2009). Global priority estimation in multiperson decision making. Journal of Optimization Theory and Applications, 140(1), 77-91. http://dx.doi.org/10.1007/s10957-008-9447-6.

Lipovetsky, S. (2012). Interpretation of Shapley Value regression coefficients as approximation for coefficients derived by elasticity criterion. In Proceedings of the Joint Statistical Meeting of the American Statistical Association (JSM'12) (pp. 3302-3307). San Diego, CA.

Lipovetsky, S. (2019). Express analysis for prioritization: best-worst scaling alteration to System 1. Journal of Management Analytics, 7(1), 12-27. http://dx.doi.org/10.1080/23270012.2019.1702112.

Lipovetsky, S. (2020a). AHP and Two-Envelope Paradox resolution via nonlinear scaling. In Proceedings of the International Symposium on Analytic Hierarchy Process. Pittsburgh, PA, USA. http://dx.doi.org/10.13033/isahp.y2020.007.

Lipovetsky, S. (2020b). Personalized key drivers for individual responses in regression modeling. International Journal of Risk and Contingency Management, 9(3), 15-30. http://dx.doi.org/10.4018/IJRCM.2020070102.

Lipovetsky, S. (2020c). Priority vector estimation: consistency, compatibility, precision. International Journal of the Analytic Hierarchy Process, 12(3), 577-591. http://dx.doi.org/10.13033/ijahp.v12i3.801.

Lipovetsky, S. (2021). Predictor analysis of group decision making. Stats, 4(1), 108-121. http://dx.doi.org/10.3390/stats4010009.

Lipovetsky, S., & Conklin, M. (2015a). AHP priorities and Markov-Chapman-Kolmogorov Steady-States probabilities. International Journal of the Analytic Hierarchy Process, 7(2), 349-363. http://dx.doi.org/10.13033/ijahp.v7i2.243.

Lipovetsky, S., & Conklin, M. (2015b). Predictor relative importance and matching regression parameters. Journal of Applied Statistics, 42(5), 1017-1031. http://dx.doi.org/10.1080/02664763.2014.994480.

Lipovetsky, S., & Tishler, A. (1999). Interval estimation of priorities in the AHP. European Journal of Operational Research, 114(1), 153-164. http://dx.doi.org/10.1016/S0377-2217(98)00012-5.

Lootsma, F. (1999). Multi-criteria decision analysis via ratio and difference judgement. London: Kluwer Academic Publishers. http://dx.doi.org/10.1007/b102374.

Markosian, N. (2011). A simple solution to the Two Envelope problem. Logos & Episteme, 2(3), 347-357.

McDonnell, M. D., Grant, A. J., Land, I., Vellambi, B. N., Abbott, D., & Lever, K. (2011). Gain from the two-envelope problem via information asymmetry: on the suboptimality of randomized switching. Proceedings of the Royal Society of London. Series A, 467(2134), 2825-2851. http://dx.doi.org/10.1098/rspa.2010.0541.

Neira-Rodado, D., Ortíz-Barrios, M., De la Hoz-Escorcia, S., Paggetti, C., Noffrini, L., & Fratea, N. (2020). Smart product design process through the implementation of a fuzzy Kano-AHP-DEMATEL-QFD approach. Applied Sciences, 10(5), 1792. http://dx.doi.org/10.3390/app10051792.

Noto, S., Shiroiwa, T., Kobayashi, M., Murata, T., Ikeda, S., & Fukuda, T. (2020). Development of a multiplicative, multi-attribute utility function and eight single-attribute utility functions for the Health Utilities Index Mark 3 in Japan. Journal of Patient-Reported Outcome, 4(1), 23. http://dx.doi.org/10.1186/s41687-020-00188-8. PMid:32246218.

Ramos, M. O., Silva, E. M., & Lima-Júnior, F. R. (2020). A fuzzy AHP approach to select suppliers in the Brazilian food supply chain. Production, 30, 1-16. http://dx.doi.org/10.1590/0103-6513.20200013.

Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

Saaty, T. L., & Peniwati, K. (2007). Group decision-making: drawing out and reconciling differences. Pittsburgh, PA: RWS Publications.

Saaty, T. L., & Vargas, L. G. (1984). Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Mathematical Modelling, 5(5), 309-324. http://dx.doi.org/10.1016/0270-0255(84)90008-3.

Whitaker, R. (2007). Validation examples of the Analytic Hierarchy Process and Analytic Network Process. Mathematical and Computer Modelling, 46(7-8), 840-859. http://dx.doi.org/10.1016/j.mcm.2007.03.018.

Yang, J., Vargas, L. G., Jin, X., & Zhou, L. (2020). Quality credit evaluation in the internet company: a system based on the analytic hierarchy process. Journal of Business Economics and Management, 21(2), 344-372. http://dx.doi.org/10.3846/jbem.2020.11409.

Yi, B. U. (2013). Conditionals and a Two-envelope Paradox. The Journal of Philosophy, 110(5), 233-257. http://dx.doi.org/10.5840/jphil2013110527.
 


Submitted date:
02/09/2021

Accepted date:
03/31/2021

60a414f4a95395288e7d7a63 production Articles
Links & Downloads

Production

Share this page
Page Sections