Production
https://prod.org.br/article/doi/10.1590/0103-6513.20200081
Production
Research Article

Risk prioritization based on the combination of FMEA and dual hesitant fuzzy sets method

Lucas Daniel Del Rosso Calache; Lucas Gabriel Zanon; Rafael Ferro Munhoz Arantes; Lauro Osiro; Luiz Cesar Ribeiro Carpinetti

Downloads: 1
Views: 843

Abstract

Abstract: Paper aims: This paper proposes the combination of the quality tool FMEA (Failure Modes Effects and Analysis) with the DHFS (Dual Hesitant Fuzzy sets) technique to process judgements with hesitation and hence conduct the prioritization of failure modes considering a group decision making problem.

Originality: There are no studies that combine the FMEA tool with the DHFS technique.

Research method: Firstly, this paper presents a review of the current FMEA literature. Then, the group decision model is presented combining the FMEA and the DHFS. Finally, an illustrative example in the context of supplier failure modes is brought to guide future applications of the proposal.

Main findings: The paper presents a model that combines the FMEA tool with the DHFS. It allows considering different risk factors weights in a group decision process with experts from several areas. The model is also able to deal with the different types of hesitations present in the judgements.

Implications for theory and practice: The traditional FMEA does not deal with individual judgments of different decision makers. The new proposal can be easily applied in different contexts of potential failure modes analysis considering different types of hesitation in group decision making, such as medical and humanitarian.

Keywords

FMEA, Dual Hesitant Fuzzy Sets, Risk evaluation, Supplier failure modes, Group decision

References

Abdelgawad, M., & Fayek, A. R. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and Management, 136(9), 1028-1036. http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000210.

Akyuz, E., & Celik, E. (2018). A quantitative risk analysis by using interval type-2 fuzzy FMEA approach: the case of oil spill. Maritime Policy & Management, 45(8), 979-994. http://dx.doi.org/10.1080/03088839.2018.1520401.

Arabsheybani, A., Paydar, M. M., & Safaei, A. S. (2018). An integrated fuzzy MOORA method and FMEA technique for sustainable supplier selection considering quantity discounts and supplier’s risk. Journal of Cleaner Production, 190, 577-591. http://dx.doi.org/10.1016/j.jclepro.2018.04.167.

Bahrebar, S., Blaabjerg, F., Wang, H., Vafamand, N., Khooban, M. H., Rastayesh, S., & Zhou, D. (2018). A novel type-2 fuzzy logic for improved risk analysis of proton exchange membrane fuel cells in marine power systems application. Energies, 11(4), 721. http://dx.doi.org/10.3390/en11040721.

Bonfant, G., Belfanti, P., Paternoster, G., Gabrielli, D., Gaiter, A. M., Manes, M., & Nebiolo, P. E. (2010). Clinical risk analysis with failure mode and effect analysis (FMEA) model in a dialysis unit. Journal of Nephrology, 23(1), 111.

Calache, L. D. D. R. (2018). Comparação de técnicas fuzzy para a decisão em grupo aplicadas à seleção de fornecedores (Dissertação de mestrado). Universidade de São Paulo, São Carlos.

Calache, L. D. D. R., Arantes, R. F. M., Zanon, L. G., Osiro, L., & Carpinetti, L. C. R. (2021). A literature review of dual hesitant fuzzy sets. Brazilian Journal of Development, 7(1), 10972-10988. http://dx.doi.org/10.34117/bjdv7n1-750.

Can, G. F. (2018). An intutionistic approach based on failure mode and effect analysis for prioritizing corrective and preventive strategies. Human Factors and Ergonomics in Manufacturing & Service Industries, 28(3), 130-147. http://dx.doi.org/10.1002/hfm.20729.

Chai, K. C., Jong, C. H., Tay, K. M., & Lim, C. P. (2016). A perceptual computing-based method to prioritize failure modes in failure mode and effect analysis and its application to edible bird nest farming. Applied Soft Computing, 49, 734-747. http://dx.doi.org/10.1016/j.asoc.2016.08.043.

Chang, K. H. (2016). Generalized multi-attribute failure mode analysis. Neurocomputing, 175, 90-100. http://dx.doi.org/10.1016/j.neucom.2015.10.039.

Chang, K. H., Wen, T. C., & Chung, H. Y. (2018). Soft failure mode and effects analysis using the OWG operator and hesitant fuzzy linguistic term sets. Journal of Intelligent & Fuzzy Systems, 34(4), 2625-2639. http://dx.doi.org/10.3233/JIFS-17594.

Chaudhuri, A., Mohanty, B. K., & Singh, K. N. (2013). Supply chain risk assessment during new product development: a group decision making approach using numeric and linguistic data. International Journal of Production Research, 51(10), 2790-2804. http://dx.doi.org/10.1080/00207543.2012.654922.

Chen, P. S., & Wu, M. T. (2013). A modified failure mode and effects analysis method for supplier selection problems in the supply chain risk environment: a case study. Computers & Industrial Engineering, 66(4), 634-642. http://dx.doi.org/10.1016/j.cie.2013.09.018.

Chin, K. S., Chan, A., & Yang, J. B. (2008). Development of a fuzzy FMEA based product design system. International Journal of Advanced Manufacturing Technology, 36(7-8), 633-649. http://dx.doi.org/10.1007/s00170-006-0898-3.

Chin, K. S., Wang, Y. M., Poon, G. K. K., & Yang, J. B. (2009). Failure mode and effects analysis using a group-based evidential reasoning approach. Computers & Operations Research, 36(6), 1768-1779. http://dx.doi.org/10.1016/j.cor.2008.05.002.

Chiozza, M. L., & Ponzetti, C. (2009). FMEA: a model for reducing medical errors. Clinica Chimica Acta, 404(1), 75-78. http://dx.doi.org/10.1016/j.cca.2009.03.015. PMid:19298799.

Chrysostom, S., & Dwivedi, R. K. (2013). A review on the methodologies used in failure modes and effects analysis (FMEA). International Journal of Mechanical and Production Engineering, 1(6), 12-15.

Fattahi, R., & Khalilzadeh, M. (2018). Risk evaluation using a novel hybrid method based on FMEA, extended MULTIMOORA, and AHP methods under fuzzy environment. Safety Science, 102, 290-300. http://dx.doi.org/10.1016/j.ssci.2017.10.018.

Fonseca, L. M. (2015). From Quality Gurus and TQM to ISO 9001: 2015: a review of several quality paths. International Journal of Qualitative Research, 9(1), 167-180.

Fonseca, L., & Domingues, J. P. (2017). ISO 9001: 2015 edition-management, quality and value. International Journal of Qualitative Research, 1(11), 149-158.

Foroozesh, N., Tavakkoli-Moghaddam, R., & Mousavi, S. M. (2018). Sustainable-supplier selection for manufacturing services: a failure mode and effects analysis model based on interval-valued fuzzy group decision-making. International Journal of Advanced Manufacturing Technology, 95(9-12), 3609-3629. http://dx.doi.org/10.1007/s00170-017-1308-8.

Geramian, A., Mehregan, M. R., Garousi Mokhtarzadeh, N., & Hemmati, M. (2017). Fuzzy inference system application for failure analyzing in automobile industry. International Journal of Quality & Reliability Management, 34(9), 1493-1507. http://dx.doi.org/10.1108/IJQRM-03-2016-0026.

Ghadge, A., Fang, X., Dani, S., & Antony, J. (2017). Supply chain risk assessment approach for process quality risks. International Journal of Quality & Reliability Management, 34(7), 940-954. http://dx.doi.org/10.1108/IJQRM-01-2015-0010.

Guo, J. (2016). A risk assessment approach for failure mode and effects analysis based on intuitionistic fuzzy sets and evidence theory. Journal of Intelligent & Fuzzy Systems, 30(2), 869-881. http://dx.doi.org/10.3233/IFS-151809.

Hajiagha, S. H. R., Hashemi, S. S., Mohammadi, Y., & Zavadskas, E. K. (2016). Fuzzy belief structure based VIKOR method: an application for ranking delay causes of Tehran metro system by FMEA criteria. Transport, 31(1), 108-118. http://dx.doi.org/10.3846/16484142.2016.1133454.

He, B., & Yang, Y. (2018). Mitigating supply risk: an approach with quantity flexibility procurement. Annals of Operations Research, 271(2), 599-617. http://dx.doi.org/10.1007/s10479-018-2840-0.

Helvacioglu, S., & Ozen, E. (2014). Fuzzy based failure modes and effect analysis for yacht system design. Ocean Engineering, 79, 131-141. http://dx.doi.org/10.1016/j.oceaneng.2013.12.015.

Hu, Y. P., You, X. Y., Wang, L., & Liu, H. C. (2019). An integrated approach for failure mode and effect analysis based on uncertain linguistic GRA–TOPSIS method. Soft Computing, 23(18), 8801-8814. http://dx.doi.org/10.1007/s00500-018-3480-7.

Huang, J., Li, Z. S., & Liu, H. C. (2017). New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliability Engineering & System Safety, 167, 302-309. http://dx.doi.org/10.1016/j.ress.2017.06.014.

Huang, Z., Jiang, W., & Tang, Y. (2018). A new method to evaluate risk in failure mode and effects analysis under fuzzy information. Soft Computing, 22(14), 4779-4787. http://dx.doi.org/10.1007/s00500-017-2664-x.

International Electrotechnical Commission – IEC. (2009). IEC/FDIS 31010: risk management: risk assessment techniques. Local.

Jenab, K., & Dhillon, B. S. (2005). Group-based failure effects analysis. International Journal of Reliability Quality and Safety Engineering, 12(04), 291-307. http://dx.doi.org/10.1142/S0218539305001835.

Jiang, W., Xie, C., Zhuang, M., & Tang, Y. (2017). Failure mode and effects analysis based on a novel fuzzy evidential method. Applied Soft Computing, 57, 672-683. http://dx.doi.org/10.1016/j.asoc.2017.04.008.

Kabir, S., & Papadopoulos, Y. (2018). A review of applications of fuzzy sets to safety and reliability engineering. International Journal of Approximate Reasoning, 100, 29-55. http://dx.doi.org/10.1016/j.ijar.2018.05.005.

Ko, W. C. (2013). Exploiting 2-tuple linguistic representational model for constructing HOQ-based failure modes and effects analysis. Computers & Industrial Engineering, 64(3), 858-865. http://dx.doi.org/10.1016/j.cie.2012.11.016.

Kumru, M., & Kumru, P. Y. (2013). Fuzzy FMEA application to improve purchasing process in a public hospital. Applied Soft Computing, 13(1), 721-733. http://dx.doi.org/10.1016/j.asoc.2012.08.007.

Li, Y. M. (2014). An approach to evaluate the clothing creative design with dual hesitant fuzzy information. Journal of Control Science and Engineering, 2014, 11. http://dx.doi.org/10.1155/2014/352619.

Li, X., He, M., & Wang, H. (2017). Application of failure mode and effect analysis in managing catheter-related blood stream infection in intensive care unit. Medicine, 96(51), e9339. http://dx.doi.org/10.1097/MD.0000000000009339. PMid:29390515.

Lin, C. Y., Lee, A. H., & Kang, H. Y. (2015). An integrated new product development framework–an application on green and low-carbon products. International Journal of Systems Science, 46(4), 733-753. http://dx.doi.org/10.1080/00207721.2013.798447.

Liu, H. C., Liu, L., Liu, N., & Mao, L. X. (2012). Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Systems with Applications, 39(17), 12926-12934. http://dx.doi.org/10.1016/j.eswa.2012.05.031.

Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Systems with Applications, 40(2), 828-838. http://dx.doi.org/10.1016/j.eswa.2012.08.010.

Liu, H. C., Fan, X. J., Li, P., & Chen, Y. Z. (2014a). Evaluating the risk of failure modes with extended MULTIMOORA method under fuzzy environment. Engineering Applications of Artificial Intelligence, 34, 168-177. http://dx.doi.org/10.1016/j.engappai.2014.04.011.

Liu, H. C., You, J. X., & You, X. Y. (2014b). Evaluating the risk of healthcare failure modes using interval 2-tuple hybrid weighted distance measure. Computers & Industrial Engineering, 78, 249-258. http://dx.doi.org/10.1016/j.cie.2014.07.018.

Liu, H. C., Liu, L., & Li, P. (2014c). Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. International Journal of Systems Science, 45(10), 2012-2030. http://dx.doi.org/10.1080/00207721.2012.760669.

Liu, H. C., You, J. X., Shan, M. M., & Shao, L. N. (2015a). Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. Soft Computing, 19(4), 1085-1098. http://dx.doi.org/10.1007/s00500-014-1321-x.

Liu, H. C., You, J. X., You, X. Y., & Shan, M. M. (2015b). A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Applied Soft Computing, 28, 579-588. http://dx.doi.org/10.1016/j.asoc.2014.11.036.

Liu, H. C., Li, P., You, J. X., & Chen, Y. Z. (2015c). A novel approach for FMEA: combination of interval 2‐tuple linguistic variables and gray relational analysis. Quality and Reliability Engineering International, 31(5), 761-772. http://dx.doi.org/10.1002/qre.1633.

Liu, H. C., Li, Z., Song, W., & Su, Q. (2017). Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Transactions on Reliability, 66(4), 1058-1072. http://dx.doi.org/10.1109/TR.2017.2754642.

Lolli, F., Ishizaka, A., Gamberini, R., Rimini, B., & Messori, M. (2015). FlowSort-GDSS–A novel group multi-criteria decision support system for sorting problems with application to FMEA. Expert Systems with Applications, 42(17-18), 6342-6349. http://dx.doi.org/10.1016/j.eswa.2015.04.028.

Lorenzi, C. I., & Ferreira, J. C. E. (2018). Failure mapping using FMEA and A3 in engineering to order product development: a case study in the industrial automation sector. International Journal of Quality & Reliability Management, 35(7), 1399. http://dx.doi.org/10.1108/IJQRM-10-2016-0179.

Mirghafoori, S. H., Izadi, M. R., & Daei, A. (2018). Analysis of the barriers affecting the quality of electronic services of libraries by VIKOR, FMEA and entropy combined approach in an intuitionistic-fuzzy environment. Journal of Intelligent & Fuzzy Systems, 34(4), 2441-2451. http://dx.doi.org/10.3233/JIFS-171695.

Ng, W. C., Teh, S. Y., Low, H. C., & Teoh, P. C. (2017). The integration of FMEA with other problem solving tools: a review of enhancement opportunities. Journal of Physics: Conference Series, 890(1), 012139. http://dx.doi.org/10.1088/1742-6596/890/1/012139.

Nguyen, H. (2016). A new interval-valued knowledge measure for interval-valued intuitionistic fuzzy sets and application in decision making. Expert Systems with Applications, 56, 143-155. http://dx.doi.org/10.1016/j.eswa.2016.03.007.

Rahmatin, N., Santoso, I., Indriani, C., Rahayu, S., & Widyaningtyas, S. (2018). Integration of the fuzzy failure mode and effect analysis (fuzzy FMEA) and the analytical network process (ANP) in marketing risk analysis and mitigation. International Journal of Technology, 9(4), 809-818. http://dx.doi.org/10.14716/ijtech.v9i4.2197.

Rezaee, M. J., Yousefi, S., Valipour, M., & Dehdar, M. M. (2018). Risk analysis of sequential processes in food industry integrating multi-stage fuzzy cognitive map and process failure mode and effects analysis. Computers & Industrial Engineering, 123, 325-337. http://dx.doi.org/10.1016/j.cie.2018.07.012.

Sutrisno, A., Moo, H., Lee, T., & Hyon, J. (2013). Improvement strategy selection in FMEA: classification, review and new opportunity roadmaps. Operations and Supply Chain Management, 6(2), 54-63.

Singh, P. (2017). Distance and similarity measures for multiple-attribute decision making with dual hesitant fuzzy sets. Computational & Applied Mathematics, 36(1), 111-126. http://dx.doi.org/10.1007/s40314-015-0219-2.

Sitnikov, C., Bocean, C. G., Berceanu, D., & Pirvu, R. (2017). Risk management model from the perspective of implementing iso 9001: 2015 standard within financial services companies. Amfiteatru Economic, 19(11), 1017-1034.

Song, W., Ming, X., Wu, Z., & Zhu, B. (2013). Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. International Journal of Computer Integrated Manufacturing, 26(12), 1172-1186. http://dx.doi.org/10.1080/0951192X.2013.785027.

Soyer, A., Asan, Ş. S., & Asan, U. (2016). Failure mode and effects analysis using hesitant fuzzy sets. In Uncertainty Modelling in Knowledge Engineering and Decision Making: Proceedings of the 12th International Flins Conference (pp. 1089-1094). Singapore: World Scientific Publishing Company.

Tooranloo, H. S. (2016). A model for failure mode and effects analysis based on intuitionistic fuzzy approach. Applied Soft Computing, 49, 238-247. http://dx.doi.org/10.1016/j.asoc.2016.07.047.

Tooranloo, H. S., Ayatollah, A. S., & Alboghobish, S. (2018). Evaluating knowledge management failure factors using intuitionistic fuzzy FMEA approach. Knowledge and Information Systems, 57, 183-205.

Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529-539.

Tummala, R., & Schoenherr, T. (2011). Assessing and managing risks using the supply chain risk management process (SCRMP). Supply Chain Management, 16(6), 474-483. http://dx.doi.org/10.1108/13598541111171165.

Valinejad, F., & Rahmani, D. (2018). Sustainability risk management in the supply chain of telecommunication companies: a case study. Journal of Cleaner Production, 203, 53-67. http://dx.doi.org/10.1016/j.jclepro.2018.08.174.

Wang, H., Zhao, X., & Wei, G. (2014). Dual hesitant fuzzy aggregation operators in multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 26(5), 2281-2290. http://dx.doi.org/10.3233/IFS-130901.

Wang, L. E., Liu, H. C., & Quan, M. Y. (2016). Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environments. Computers & Industrial Engineering, 102, 175-185. http://dx.doi.org/10.1016/j.cie.2016.11.003.

Wang, W., Liu, X., Qin, Y., & Fu, Y. (2018). A risk evaluation and prioritization method for FMEA with prospect theory and Choquet integral. Safety Science, 110, 152-163. http://dx.doi.org/10.1016/j.ssci.2018.08.009.

Wu, T., Blackhurst, J., & Chidambaram, V. (2006). A model for inbound supply risk analysis. Computers in Industry, 57(4), 350-365. http://dx.doi.org/10.1016/j.compind.2005.11.001.

Xu, K., Tang, L. C., Xie, M., Ho, S. L., & Zhu, M. L. (2002). Fuzzy assessment of FMEA for engine systems. Reliability Engineering & System Safety, 75(1), 17-29. http://dx.doi.org/10.1016/S0951-8320(01)00101-6.

Yazdi, M., Daneshvar, S., & Setareh, H. (2017). An extension to Fuzzy Developed Failure Mode and Effects Analysis (FDFMEA) application for aircraft landing system. Safety Science, 98, 113-123. http://dx.doi.org/10.1016/j.ssci.2017.06.009.

Yu, D., Li, D. F., & Merigo, J. M. (2016). Dual hesitant fuzzy group decision making method and its application to supplier selection. International Journal of Machine Learning and Cybernetics, 7(5), 819-831. http://dx.doi.org/10.1007/s13042-015-0400-3.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X.

Zeng, W., Xi, Y., Yin, Q., & Guo, P. (2018, November). Weighted dual hesitant fuzzy sets and its application in group decision making. In 2018 14th International Conference on Computational Intelligence and Security (CIS) (pp. 77-82). New York: IEEE. http://dx.doi.org/10.1109/CIS2018.2018.00025.

Zhang, H., Dong, Y., Palomares-Carrascosa, I., & Zhou, H. (2019). Failure mode and effect analysis in a linguistic context: a consensus-based multiattribute group decision-making approach. IEEE Transactions on Reliability, 68(2), 566-582. http://dx.doi.org/10.1109/TR.2018.2869787.

Zhang, H., Shu, L., Liao, S., & Xiawu, C. (2017). Dual hesitant fuzzy rough set and its application. Soft Computing, 21(12), 3287-3305. http://dx.doi.org/10.1007/s00500-015-2008-7.

Zhang, J., Hegde, G. G., Shang, J., & Qi, X. (2016). Evaluating emergency response solutions for sustainable community development by using fuzzy multi-criteria group decision making approaches: IVDHF-TOPSIS and IVDHF-VIKOR. Sustainability, 8(4), 291. http://dx.doi.org/10.3390/su8040291.

Zhang, Z., & Chu, X. (2011). Risk prioritization in failure mode and effects analysis under uncertainty. Expert Systems with Applications, 38(1), 206-214. http://dx.doi.org/10.1016/j.eswa.2010.06.046.

Zhu, B., Xu, Z., & Xia, M. (2012). Dual hesitant fuzzy sets. Journal of Applied Mathematics, 2012, 879629.

Zhu, J., Wang, R., & Li, Y. (2018). Failure mode and effects analysis considering consensus and preferences interdependence. Algorithms, 11(4), 34. http://dx.doi.org/10.3390/a11040034.

Zolfaghari, S., & Mousavi, S. M. (2018). Construction-project risk assessment by a new decision model based on De-Novo multi-approaches analysis and hesitant fuzzy sets under uncertainty. Journal of Intelligent & Fuzzy Systems, 35(1), 639-649. http://dx.doi.org/10.3233/JIFS-162013.
 


Submitted date:
08/06/2020

Accepted date:
05/10/2021

60c0f372a953956aab5688c4 production Articles
Links & Downloads

Production

Share this page
Page Sections