Production
https://prod.org.br/doi/10.1590/S0103-65132013005000077?lang=en
Production
Article

Um novo modelo de previsão de demanda para inovações radicais

A novel demand forecasting model for radical innovation

Neumann, Donald; Santa-Eulalia, Luis Antonio de; Yoshino, Rui Tadashi; Klasen, Jörg

Downloads: 0
Views: 65

Resumo

Este trabalho apresenta um novo modelo para a previsão de demanda de inovações radicais baseada em simulação de Dinâmica de Sistemas que combina conceitos do modelo de difusão de Bass e do modelo de escolha discreta. Diferentemente de outras abordagens existentes, esta proposta permite estimar não somente a fatia de mercado do produto, mas também seu comportamento no tempo (timing), a partir das preferências individuais do consumidor e das forças que as influenciam. O modelo proposto pode ser facilmente parametrizado através da Conjoint Analysis e foi testado em escala real no mercado alemão de carros elétricos. Os resultados obtidos colocam em evidência o potencial da abordagem proposta, auxiliando na compreensão dos principais fatores na escolha desse produto.

Palavras-chave

Previsão de demanda. Dinâmica de sistemas. Indústria automobilística. Pesquisa de mercado

Abstract

This work presents a novel simulation-based forecasting approach combining concepts from the Bass Diffusion Model and the Discrete Choice Model from a System Dynamics perspective. The proposed approach allows for the forecasting of the adoption rate and the timing of adoption by examining the underlying preferences of individual customers and the social forces that influence these underlying preferences. A real-scale preliminary application to the German market for electric cars, parameterized through a conjoint analysis, is provided. Simulation results show the potential of the proposed approach, which provides evidence for the main factors that influence the electric vehicle adoption process in Germany.

Keywords

Demand forecasting. System dynamics. Automotive industry. Market research

References



AALSBURG, J. V. et al. The Bass Model. Geophysical Research Abstracts, v. 11, n. EGU2009-3296, 2009.

ANAS, A. Discrete choice theory, information theory and the multinomial logit and gravity models. Transportation Research Part B: Methodological, v. 17, n. 1, p. 13-23, 1983. http://dx.doi.org/10.1016/0191-2615(83)90023-1

BASS, F. A New Product Growth for Model Consumer Durables: The Bass Model. Management Science, v. 50, n. 12, p. 1833-1840, 2004. http://dx.doi.org/10.1287/mnsc.1040.0300

BASS, F. M. A New Product Growth Model for Consumer Durables. Management Science, v. 15, n. 5, p. 215-227, 1969. http://dx.doi.org/10.1287/mnsc.15.5.215

BEGGS, S.; CARDELL, S.; HAUSMAN, J. Assessing the potential demand for electric cars. Journal of Econometrics, v. 17, n. 1, p. 1-19, 1981. http://dx.doi.org/10.1016/0304-4076(81)90056-7

CHATTERJEE, R.; ELIASHBERG, J. The innovation diffusion process in a heterogeneouspopulation: a micromodeling approach. Management Science, v. 36, n. 9, p. 1057-1079, 1990. http://dx.doi.org/10.1287/mnsc.36.9.1057

CHEN, Y.; CARRILLO, J. E. Single firm product diffusion model for single-function and fusion products. European Journal of Operational Research, v. 214, n. 2, p. 232-245, 2011. http://dx.doi.org/10.1016/j.ejor.2011.04.030

DODSON, J. A.; MULLER, E. Models of new product diffusion through advertising and word-of-mouth. Management Science, v. 24, n. 15, p. 1568-1578, 1978. http://dx.doi.org/10.1287/mnsc.24.15.1568

DRAKOPOULOS, S. A. The implicit psychology of the theory of the rational consumer: an interpretation. Australian Economic Papers, v. 29, n. 55, p. 182-198, 1990. http://dx.doi.org/10.1111/j.1467-8454.1990.tb00517.x

DUBÉ, J. P.; HITSCH, G.; JINDAL, P. The Joint Identification of Utility and Discount Functions from Stated Choice Data: An Application to Durable Goods Adoption. Cambridge: National Bureau of Economic Research, 2012. Working Paper 18393, Disponível em: . Acesso em: jan. 2013. http://dx.doi.org/10.3386/w18393

DUBÉ, J. P.; HITSCH, G.; JINDAL, P. Estimating Durable Goods Adoption Decisions From Stated Choice Data. Chicago: University of Chicago, 2011. Working Paper. Disponível em: . Acesso em: jan. 2013.

EWING, G.; SARIGÖLLÜ, E. Assessing consumer preferences for clean-fuel vehicles: A discrete choice experiment. Journal of Public Policy Marketing, v. 19, n. 1, p. 106-118, 2000. http://dx.doi.org/10.1509/jppm.19.1.106.16946

FIGUEIREDO, J. C. B. Estudo da difusão da tecnologia móvel celular no Brasil: uma abordagem com o uso de Dinâmica de Sistemas. Produção, v. 19, n. 1, p. 230-245, 2009. http://dx.doi.org/10.1590/S0103-65132009000100015

FORNERINO, M. Internet Adoption in France. The Service Industries Journal, v. 23, n. 1, p.119-135, 2003. http://dx.doi.org/10.1080/02642060412331300812

FORRESTER, J. W. Industrial Dynamics. Cambridge: MIT Press, 1961.

FRENZEL, A.; GRUPP, H. Using models of innovation diffusion to forecast market success: a practitioners' guide. Research Evaluation, v. 18, n. 1, p. 39-50, 2009. http://dx.doi.org/10.3152/095820209X393172

GENSCH, D. H.; RECKER, W. W. The multinomial, multiattribute logit choice model. Journal of Marketing Research, v. 16, n. 1, p. 124-132, 1979. http://dx.doi.org/10.2307/3150883

GOLDENBERG, J.; LIBAI, B.; MULLER, E. The chilling effects of network externalities. International Journal of Research in Marketing, v. 27, n. 1, p. 4-15, 2010. http://dx.doi.org/10.1016/j.ijresmar.2009.06.006

GREEN, P. E.; KRIEGER, A. M.; WIND, Y. Thirty Years of Conjoint Analysis: Reflections and Prospects. Interfaces, v. 31, n. 3, p. S56-S73, 2001. http://dx.doi.org/10.1287/inte.31.3s.56.9676

HORSKY, D. A diffusion model incorporationg product benefits, price, income and information. Marketing Science, v. 9, n. 4, p. 342-365, 1990. http://dx.doi.org/10.1287/mksc.9.4.342

KALISH, S. A new product adoption model with price, advertising and uncertainty, Management Science, v. 31, n. 12, p. 1569-1585, 1985. http://dx.doi.org/10.1287/mnsc.31.12.1569

KIM, W.-J.; LEE, J.-D.; KIM, T.-Y. Demand forecasting for multigenerational products combining discrete choice and dynamics ofdiffusion under technological trajectories. Technological Forecasting Social Change, v. 72, n. 7, p. 825-849, 2005. http://dx.doi.org/10.1016/j.techfore.2003.09.003

KLASEN, J.; NEUMANN, D. An agent-based method for planning innovations. International Journal of Innovation and Sustainable Development, v. 5, n. 2-3, p. 159-184, 2011.

KRENG, V. B.; WANG, B. J. An innovation diffusion of successive generations by system dynamics: An empirical study of Nike Golf Company. Technological Forecasting Social Change, v. 80, p. 77-87, 2013. http://dx.doi.org/10.1016/j.techfore.2012.08.002

LEE, D. H. et al. Analysis on the feedback effect for the diffusion of innovative technologies focusing on the green car. Technological Forecasting and Social Change, v. 80, n. 3, p. 498-509, 2013. http://dx.doi.org/10.1016/j.techfore.2012.08.009

LEE, J. et al. Forecasting future demand for large-screen television sets using conjoint analysis with diffusion model. Technological Forecasting Social Change, v. 73, n. 4, p. 362-376, 2006. http://dx.doi.org/10.1016/j.techfore.2004.12.002

LIM, J. et al. Forecasting 3G mobile subscription in China: A study based on stochastic frontier analysis and a Bass diffusion model. Telecommunications Policy, v. 36, n. 10-11, p. 858-871, 2012. http://dx.doi.org/10.1016/j.telpol.2012.07.016

MAHAJAN, V.; MULLER, E.; WIND, Y. New-Product Diffusion Models. London: Kluwer Academic Publishers, 2000.

MAIER, F. H. New product diffusion models in innovation management: a system dynamics perspective. System Dynamics Review, v. 14, n. 4, p. 285-308, 1998. http://dx.doi.org/10.1002/(SICI)1099-1727(199824)14:4<285::AID-SDR153>3.0.CO;2-F

MARTEL, A. La recherche instrumentale sectorielle en sciences de l'administration. In: AUDET, M.; MALOUIN, J.-L. La production des connaissances scientifiques de l'administration: The generation of scientific administrative knowledge. Québec: Les Presses de l'Université Laval, 1986.

MATTESSICH, R. Instrumental reasoning and systems methodology. Reidel Pub. Co., 1978. http://dx.doi.org/10.1007/978-94-010-9431-3

McDADE, S.; OLIVA, T. A.; THOMAS, E. Forecasting organizational adoption of high-technology product innovations separated by impact: Are traditional macro-level diffusion models appropriate?. Industrial Marketing Management, v. 39, n. 2, p. 298-307, 2010. http://dx.doi.org/10.1016/j.indmarman.2008.11.002

MEADE, N.; ISLAM, T. Modelling and forecasting the difusion of innovation: a 25-year review. International Journal of Forecasting, v. 22, n. 3, p. 519-545, 2006. http://dx.doi.org/10.1016/j.ijforecast.2006.01.005

MEYER, P. E.; WINEBRAKE, J. Modeling technology diffusion of complementary goods: The case of hydrogen vehicles and refueling infrastructure. Technovation, v. 29, n. 2, p. 77-91, 2009. http://dx.doi.org/10.1016/j.technovation.2008.05.004

MILLING, P. Decision support for marketing new products, In: ARACIL, J.; MACHUCA, J. A. D.; KARSKY, M. (Ed.). System Dynamics: On the Move. Seville: The System Dynamics Society, 1986. p. 787-793.

MOOY, R. M.; LANGLEY, D. J.; KLOK, J. The ACMI adoption model: predicting the diffusion of innovation. In: SYSTEM DYNAMICS CONFERENCE, 2004, Oxford. Procedings... Oxford, 2004.

NEUMANN, D. Previsão e Planejamento de Demanda de Novos Produtos: uma abordagem integrada. Revista Mundo Logística, v. 15, p. 54-72, mar./abr. 2010.

PARK, S. Y.; KIM, J. W.; LEE, D. H. Development of a market penetration forecasting model for Hydrogen FuelCell Vehicles considering infrastructure and cost reduction effects. Energy Policy, v. 39, n. 6, p. 3307-3315, 2011. http://dx.doi.org/10.1016/j.enpol.2011.03.021

SEGAL, R. Forecasting the market for electric vehicles in california using conjoint analysis. Energy Journal, v. 16, n. 3, p. 89-112, 1995. http://dx.doi.org/10.5547/ISSN0195-6574-EJ-Vol16-No3-4

SILVA, E. L.; MENEZES, E. M. Metodologia da Pesquisa e Elaboração de dissertação. 4. ed. rev. atual. Florianópolis: Laboratório de Ensino à Distância da UFSC, 2005. p. 138.

STERMAN, J. D. Business Dynamics: systems thinking and modeling for a complex world. Boston: McGraw-Hill Higher Education, 2000.

THUN, J.-H.; GRÖßLER, A.; MILLING, P. M. The Diffusion of Goods Considering Network Externalities: A System Dynamics-Based Approach. In: INTERNATIONAL CONFERENCE OF THE SYSTEM DYNAMICS SOCIETY SUSTAINABILITY IN THE THIRD MILLENNIUM, 18., Bergen, 2000. Proceedings... Bergen, 2000.

TSAI, B. H.; LI, Y.; LEE, G. H. Forecasting global adoption of crystal display televisions with modified product diffusion model. Computers Industrial Engineering, v. 58, n. 4, p. 553-562, 2010. http://dx.doi.org/10.1016/j.cie.2009.12.002

TSENG, F. M.; HU, Y. C. Quadratic-interval Bass model for new product sales diffusion. Expert Systems with Applications, v. 36, n. 4, p. 8496-8502, 2009. http://dx.doi.org/10.1016/j.eswa.2008.10.078

URBAN, G. L.; HAUSER, J. R. Design and marketing of new products. Prentice Hall, 1980.

VOETH, M. Nutzenmessung in der Kaufverhaltensforschung: die Hierarchische Individualisierte Limit Conjoint- Analyse. Deutscher Universitäts-Verlag; Auflage, 2000. http://dx.doi.org/10.1007/978-3-322-91477-4

5883a44c7f8c9da00c8b4887 production Articles
Links & Downloads

Production

Share this page
Page Sections