Production
https://prod.org.br/doi/10.1590/0103-6513.20190015
Production
Research Article

Accounting for greenhouse gas emissions from traffic rearrangement: a network vulnerability perspective

George Vasconcelos Goes; cD’Agosto; Pedro Henrique de Castro Albuquerque Machado

Downloads: 0
Views: 98

Abstract

Abstract: Paper aims: This study aims to accounting for greenhouse gas emissions from traffic rearrangement, using a network vulnerability framework.

Originality: We present a new procedure to verify the effectiveness of accident risk as an attribute to find the most vulnerable links of a road network, estimating the amount emitted in the process.

Research method: Vulnerability is measured by the variation in CO2 equivalent emitted and total distance traveled, after changes in accessibility patterns.

Main findings: To date, limited research exists on accounting for emissions from the perspective of vulnerability. Three scenarios of risk-level and traffic conditions were modeled. Results indicate that high levels of accidents exposure may increase emissions by 5.2% compared to a low-risk scenario, and 9.1% compared to an unabridged network scenario.

Implications for theory and practice: The proposed framework could support governmental policies and urban planning to verify the impact of accessibility patterns in GHG emissions.

Keywords

Greenhouse gas, Emissions, Vulnerability, Risk

References

Althor, G., Watson, J. E., & Fuller, R. A. (2016). Global mismatch between greenhouse gas emissions and the burden of climate change. Scientific Reports, 6(1), 20281. http://dx.doi.org/10.1038/srep20281. PMid:26848052.

Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51(1), 196-215. http://dx.doi.org/10.1016/j.cie.2006.07.011.

Ambituuni, A., Amezaga, J. M., & Werner, D. (2015). Risk assessment of petroleum product transportation by road: a framework for regulatory improvement. Safety Science, 79, 324-335. http://dx.doi.org/10.1016/j.ssci.2015.06.022.

Asadabadi, A., & Miller-Hooks, E. (2017). Assessing strategies for protecting transportation infrastructure from an uncertain climate future. Transportation Research Part A, Policy and Practice, 105, 27-41. http://dx.doi.org/10.1016/j.tra.2017.08.010.

Bevrani, B., Burdett, R. L., Bhaskar, A., & Yarlagadda, P. K. D. V. (2017). A capacity assessment approach for multi-modal transportation systems. European Journal of Operational Research, 263(3), 864-878. http://dx.doi.org/10.1016/j.ejor.2017.05.007.

Brasil, Ministério do Meio Ambiente – MMA. (2014). Inventário nacional de emissões atmosféricas por veículos automotores rodoviários. Brasília: MMA.

Brasil, Ministério de Ciência, Tecnologia e Inovação ­– MCTI. (2016). Terceira comunicação nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima (Vol. 2). Brasília: MCTI.

Budetta, P., & Nappi, M. (2013). Comparison between qualitative rockfall risk rating systems for a road affected by high traffic intensity. Natural Hazards and Earth System Sciences, 13(6), 1643-1653. http://dx.doi.org/10.5194/nhess-13-1643-2013.

Cardoso, G., & Goldner, L. G. (2007). Desenvolvimento e aplicação de modelos para previsão de acidentes de trânsito. Transportes, 15(2), 43-51. http://dx.doi.org/10.14295/transportes.v15i2.35.

Chen, A., Yang, C., Kongsomsaksakul, S., & Lee, M. (2007). Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Networks and Spatial Economics, 7(3), 241-256. http://dx.doi.org/10.1007/s11067-006-9012-5.

Colella, D. A. T., Lima, E. P., & Demarchi, S. H. (2004) Calibração e validação do modelo fluxo-velocidade do Integration para vias urbanas semaforizadas. In Anais do XVIII Congresso de Pesquisa e Ensino em Transportes (Vol. 1, pp. 453-564). Florianópolis: Associação Nacional de Pesquisa e Ensino em Transportes.

Companhia Ambiental do Estado de São Paulo – CETESB. (2017). Vehicle emissions in the state of São Paulo 2016. São Paulo: CETESB.

Conca, A., Ridella, C., & Sapori, E. (2016). A risk assessment for road transportation of dangerous goods: a routing solution. Transportation Research Procedia, 14, 2890-2899. http://dx.doi.org/10.1016/j.trpro.2016.05.407.

Davis, C. L., & Vincent, K. (2017). Climate risk and vulnerability: a handbook for Southern Africa. Pretoria: CSIR.

Demirel, H., Kompil, M., & Nemry, F. (2015). A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges. Transportation Research Part A, Policy and Practice, 81, 62-76. http://dx.doi.org/10.1016/j.tra.2015.05.002.

European Environment Agency – EEA. (2016). EMEP/EEA air pollutant emission inventory guidebook 2016: technical guidance to prepare national emission inventories (pp. 1-20). Copenhagen: EEA.

Faturechi, R., & Miller-Hooks, E. (2014). Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review. Journal of Infrastructure Systems, 21(1), 1-15. http://dx.doi.org/10.1061/(ASCE)IS.1943-555X.0000212.

Fialkoff, M. R., Omitaomu, O. A., Peterson, S. K., & Tuttle, M. A. (2017). Using geographic information science to evaluate legal restrictions on freight transportation routing in disruptive scenarios. International Journal of Critical Infrastructure Protection, 17, 60-74. http://dx.doi.org/10.1016/j.ijcip.2016.12.001.

Füssel, H. M., & Klein, R. J. (2006). Climate change vulnerability assessments: an evolution of conceptual thinking. Climatic Change, 75(3), 301-329. http://dx.doi.org/10.1007/s10584-006-0329-3.

Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using priority-based encoding. OR-Spektrum, 28(3), 337-354. http://dx.doi.org/10.1007/s00291-005-0029-9.

Goes, G. V., & Bertoncini, B. V. (2016). Modelo de estimação de custos do transporte urbano de cargas com base na vulnerabilidade da rede viária. Journal of Transport Literature, 10(2), 30-34. http://dx.doi.org/10.1590/2238-1031.jtl.v10n2a6.

Haimes, Y. Y. (1998). Risk modeling, assessment, and management. New York: Wiley.

Huang, Z., Kuang, A., Fan, W., & Zhou, Q. (2012). Impact of traveler information on road network travel time reliability. Journal of Transportation Systems Engineering and Information Technology, 12(6), 93-99. http://dx.doi.org/10.1016/S1570-6672(11)60235-3.

Inanloo, B., Tansel, B., Shams, K., Jin, X., & Gan, A. (2016). A decision aid GIS-based risk assessment and vulnerability analysis approach for transportation and pipeline networks. Safety Science, 84, 57-66. http://dx.doi.org/10.1016/j.ssci.2015.11.018.

Intergovernmental Panel on Climate Change – IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. Kanagawa: National Greenhouse Gas Inventories Programme, Institute for Global Environmental Strategies.

Jenelius, E., & Mattsson, L. G. (2012). Road network vulnerability analysis of area-covering disruptions: a grid-based approach with case study. Transportation Research Part A, Policy and Practice, 46(5), 746-760. http://dx.doi.org/10.1016/j.tra.2012.02.003.

Jenelius, E., Petersen, T., & Mattsson, L. G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A, Policy and Practice, 40(7), 537-560. http://dx.doi.org/10.1016/j.tra.2005.11.003.

Karim, A., & Adeli, H. (2002). Incident detection algorithm using wavelet energy representation of traffic patterns. Journal of Transportation Engineering, 128(3), 232-242. http://dx.doi.org/10.1061/(ASCE)0733-947X(2002)128:3(232).

Kermanshah, A., & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153, 39-49. http://dx.doi.org/10.1016/j.ress.2016.04.007.

Knoop, V. L., Hoogendoorn, S. P., & van Zuylen, H. J. (2007). Approach to critical link analysis of robustness for dynamical road networks. In A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg & D. E. Wolf (Eds.), Traffic and granular flow’05 (pp. 393-402). Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-540-47641-2_35.

Knoop, V. L., Snelder, M., van Zuylen, H. J., & Hoogendoorn, S. P. (2012). Link-level vulnerability indicators for real-world networks. Transportation Research Part A, Policy and Practice, 46(5), 843-854. http://dx.doi.org/10.1016/j.tra.2012.02.004.

Luathep, P., Sumalee, A., Ho, H. W., & Kurauchi, F. (2011). Large-scale road network vulnerability analysis: a sensitivity analysis based approach. Transportation, 38(5), 799-817. http://dx.doi.org/10.1007/s11116-011-9350-0.

Lyons, G., & Davidson, C. (2016). Guidance for transport planning and policymaking in the face of an uncertain future. Transportation Research Part A, Policy and Practice, 88, 104-116. http://dx.doi.org/10.1016/j.tra.2016.03.012.

Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems: a discussion of recent research. Transportation Research Part A, Policy and Practice, 81, 16-34. http://dx.doi.org/10.1016/j.tra.2015.06.002.

Muriel-Villegas, J. E., Alvarez-Uribe, K. C., Patiño-Rodríguez, C. E., & Villegas, J. G. (2016). Analysis of transportation networks subject to natural hazards: insights from a Colombian case. Reliability Engineering & System Safety, 152, 151-165. http://dx.doi.org/10.1016/j.ress.2016.03.006.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659-740). Cambridge: Cambridge University Press.

Nagpure, A. S., Sharma, K., & Gurjar, B. R. (2013). Traffic induced emission estimates and trends (2000-2005) in megacity Delhi. Urban Climate, 4, 61-73. http://dx.doi.org/10.1016/j.uclim.2013.04.005.

Romero-Lankao, P., & Dodman, D. (2011). Cities in transition: transforming urban centers from hotbeds of GHG emissions and vulnerability to seedbeds of sustainability and resilience: Introduction and Editorial overview. Current Opinion in Environmental Sustainability, 3(3), 113-120. http://dx.doi.org/10.1016/j.cosust.2011.02.002.

Scott, D. M., Novak, D. C., Aultman-Hall, L., & Guo, F. (2006). Network Robustness Index: a new method for identifying critical links and evaluating the performance of transportation networks. Journal of Transport Geography, 14(3), 215-227. http://dx.doi.org/10.1016/j.jtrangeo.2005.10.003.

Sullivan, J. L., Novak, D. C., Aultman-Hall, L., & Scott, D. M. (2010). Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: a link-based capacity-reduction approach. Transportation Research Part A, Policy and Practice, 44(5), 323-336. http://dx.doi.org/10.1016/j.tra.2010.02.003.

Tampère, C. M. J., Stada, J., Immers, B., Peetermans, E., & Organe, K. (2008). Methodology for identifying vulnerable sections in a national road network. Transportation Research Record: Journal of the Transportation Research Board, 2012(1), 1-10. http://dx.doi.org/10.3141/2012-01.

Taylor, M. A., Sekhar, S. V., & D’Este, G. M. (2006). Application of accessibility-based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6(3-4), 267-291. http://dx.doi.org/10.1007/s11067-006-9284-9.

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning and Control, 27(5), 408-420. http://dx.doi.org/10.1080/09537287.2015.1129464.

Thorisson, H., & Lambert, J. H. (2017). Multiscale identification of emergent and future conditions along corridors of transportation networks. Reliability Engineering & System Safety, 167, 255-263. http://dx.doi.org/10.1016/j.ress.2017.06.005.

Transportation Research Board – TRB. (1998). Travel estimation techniques for urban planning (NCHR Report, 365). Washington: TRB.

Wang, X. (2005). Integrating GIS, simulation models, and visualization in traffic impact analysis. Computers, Environment and Urban Systems, 29(4), 471-496. http://dx.doi.org/10.1016/j.compenvurbsys.2004.01.002.

Yin, Y., & Lawphongpanich, S. (2006). Internalizing emission externality on road networks. Transportation Research Part D, Transport and Environment, 11(4), 292-301. http://dx.doi.org/10.1016/j.trd.2006.05.003.
 

5d1b91420e88251d25b687d5 production Articles
Links & Downloads

Production

Share this page
Page Sections