Research Article

Accounting for greenhouse gas emissions from traffic rearrangement: a network vulnerability perspective

George Vasconcelos Goes; cD’Agosto; Pedro Henrique de Castro Albuquerque Machado

Downloads: 0
Views: 98


Abstract: Paper aims: This study aims to accounting for greenhouse gas emissions from traffic rearrangement, using a network vulnerability framework.

Originality: We present a new procedure to verify the effectiveness of accident risk as an attribute to find the most vulnerable links of a road network, estimating the amount emitted in the process.

Research method: Vulnerability is measured by the variation in CO2 equivalent emitted and total distance traveled, after changes in accessibility patterns.

Main findings: To date, limited research exists on accounting for emissions from the perspective of vulnerability. Three scenarios of risk-level and traffic conditions were modeled. Results indicate that high levels of accidents exposure may increase emissions by 5.2% compared to a low-risk scenario, and 9.1% compared to an unabridged network scenario.

Implications for theory and practice: The proposed framework could support governmental policies and urban planning to verify the impact of accessibility patterns in GHG emissions.


Greenhouse gas, Emissions, Vulnerability, Risk


Althor, G., Watson, J. E., & Fuller, R. A. (2016). Global mismatch between greenhouse gas emissions and the burden of climate change. Scientific Reports, 6(1), 20281. PMid:26848052.

Altiparmak, F., Gen, M., Lin, L., & Paksoy, T. (2006). A genetic algorithm approach for multi-objective optimization of supply chain networks. Computers & Industrial Engineering, 51(1), 196-215.

Ambituuni, A., Amezaga, J. M., & Werner, D. (2015). Risk assessment of petroleum product transportation by road: a framework for regulatory improvement. Safety Science, 79, 324-335.

Asadabadi, A., & Miller-Hooks, E. (2017). Assessing strategies for protecting transportation infrastructure from an uncertain climate future. Transportation Research Part A, Policy and Practice, 105, 27-41.

Bevrani, B., Burdett, R. L., Bhaskar, A., & Yarlagadda, P. K. D. V. (2017). A capacity assessment approach for multi-modal transportation systems. European Journal of Operational Research, 263(3), 864-878.

Brasil, Ministério do Meio Ambiente – MMA. (2014). Inventário nacional de emissões atmosféricas por veículos automotores rodoviários. Brasília: MMA.

Brasil, Ministério de Ciência, Tecnologia e Inovação ­– MCTI. (2016). Terceira comunicação nacional do Brasil à Convenção-Quadro das Nações Unidas sobre Mudança do Clima (Vol. 2). Brasília: MCTI.

Budetta, P., & Nappi, M. (2013). Comparison between qualitative rockfall risk rating systems for a road affected by high traffic intensity. Natural Hazards and Earth System Sciences, 13(6), 1643-1653.

Cardoso, G., & Goldner, L. G. (2007). Desenvolvimento e aplicação de modelos para previsão de acidentes de trânsito. Transportes, 15(2), 43-51.

Chen, A., Yang, C., Kongsomsaksakul, S., & Lee, M. (2007). Network-based accessibility measures for vulnerability analysis of degradable transportation networks. Networks and Spatial Economics, 7(3), 241-256.

Colella, D. A. T., Lima, E. P., & Demarchi, S. H. (2004) Calibração e validação do modelo fluxo-velocidade do Integration para vias urbanas semaforizadas. In Anais do XVIII Congresso de Pesquisa e Ensino em Transportes (Vol. 1, pp. 453-564). Florianópolis: Associação Nacional de Pesquisa e Ensino em Transportes.

Companhia Ambiental do Estado de São Paulo – CETESB. (2017). Vehicle emissions in the state of São Paulo 2016. São Paulo: CETESB.

Conca, A., Ridella, C., & Sapori, E. (2016). A risk assessment for road transportation of dangerous goods: a routing solution. Transportation Research Procedia, 14, 2890-2899.

Davis, C. L., & Vincent, K. (2017). Climate risk and vulnerability: a handbook for Southern Africa. Pretoria: CSIR.

Demirel, H., Kompil, M., & Nemry, F. (2015). A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges. Transportation Research Part A, Policy and Practice, 81, 62-76.

European Environment Agency – EEA. (2016). EMEP/EEA air pollutant emission inventory guidebook 2016: technical guidance to prepare national emission inventories (pp. 1-20). Copenhagen: EEA.

Faturechi, R., & Miller-Hooks, E. (2014). Measuring the performance of transportation infrastructure systems in disasters: a comprehensive review. Journal of Infrastructure Systems, 21(1), 1-15.

Fialkoff, M. R., Omitaomu, O. A., Peterson, S. K., & Tuttle, M. A. (2017). Using geographic information science to evaluate legal restrictions on freight transportation routing in disruptive scenarios. International Journal of Critical Infrastructure Protection, 17, 60-74.

Füssel, H. M., & Klein, R. J. (2006). Climate change vulnerability assessments: an evolution of conceptual thinking. Climatic Change, 75(3), 301-329.

Gen, M., Altiparmak, F., & Lin, L. (2006). A genetic algorithm for two-stage transportation problem using priority-based encoding. OR-Spektrum, 28(3), 337-354.

Goes, G. V., & Bertoncini, B. V. (2016). Modelo de estimação de custos do transporte urbano de cargas com base na vulnerabilidade da rede viária. Journal of Transport Literature, 10(2), 30-34.

Haimes, Y. Y. (1998). Risk modeling, assessment, and management. New York: Wiley.

Huang, Z., Kuang, A., Fan, W., & Zhou, Q. (2012). Impact of traveler information on road network travel time reliability. Journal of Transportation Systems Engineering and Information Technology, 12(6), 93-99.

Inanloo, B., Tansel, B., Shams, K., Jin, X., & Gan, A. (2016). A decision aid GIS-based risk assessment and vulnerability analysis approach for transportation and pipeline networks. Safety Science, 84, 57-66.

Intergovernmental Panel on Climate Change – IPCC. (2006). IPCC guidelines for national greenhouse gas inventories. Kanagawa: National Greenhouse Gas Inventories Programme, Institute for Global Environmental Strategies.

Jenelius, E., & Mattsson, L. G. (2012). Road network vulnerability analysis of area-covering disruptions: a grid-based approach with case study. Transportation Research Part A, Policy and Practice, 46(5), 746-760.

Jenelius, E., Petersen, T., & Mattsson, L. G. (2006). Importance and exposure in road network vulnerability analysis. Transportation Research Part A, Policy and Practice, 40(7), 537-560.

Karim, A., & Adeli, H. (2002). Incident detection algorithm using wavelet energy representation of traffic patterns. Journal of Transportation Engineering, 128(3), 232-242.

Kermanshah, A., & Derrible, S. (2016). A geographical and multi-criteria vulnerability assessment of transportation networks against extreme earthquakes. Reliability Engineering & System Safety, 153, 39-49.

Knoop, V. L., Hoogendoorn, S. P., & van Zuylen, H. J. (2007). Approach to critical link analysis of robustness for dynamical road networks. In A. Schadschneider, T. Pöschel, R. Kühne, M. Schreckenberg & D. E. Wolf (Eds.), Traffic and granular flow’05 (pp. 393-402). Heidelberg: Springer.

Knoop, V. L., Snelder, M., van Zuylen, H. J., & Hoogendoorn, S. P. (2012). Link-level vulnerability indicators for real-world networks. Transportation Research Part A, Policy and Practice, 46(5), 843-854.

Luathep, P., Sumalee, A., Ho, H. W., & Kurauchi, F. (2011). Large-scale road network vulnerability analysis: a sensitivity analysis based approach. Transportation, 38(5), 799-817.

Lyons, G., & Davidson, C. (2016). Guidance for transport planning and policymaking in the face of an uncertain future. Transportation Research Part A, Policy and Practice, 88, 104-116.

Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems: a discussion of recent research. Transportation Research Part A, Policy and Practice, 81, 16-34.

Muriel-Villegas, J. E., Alvarez-Uribe, K. C., Patiño-Rodríguez, C. E., & Villegas, J. G. (2016). Analysis of transportation networks subject to natural hazards: insights from a Colombian case. Reliability Engineering & System Safety, 152, 151-165.

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 659-740). Cambridge: Cambridge University Press.

Nagpure, A. S., Sharma, K., & Gurjar, B. R. (2013). Traffic induced emission estimates and trends (2000-2005) in megacity Delhi. Urban Climate, 4, 61-73.

Romero-Lankao, P., & Dodman, D. (2011). Cities in transition: transforming urban centers from hotbeds of GHG emissions and vulnerability to seedbeds of sustainability and resilience: Introduction and Editorial overview. Current Opinion in Environmental Sustainability, 3(3), 113-120.

Scott, D. M., Novak, D. C., Aultman-Hall, L., & Guo, F. (2006). Network Robustness Index: a new method for identifying critical links and evaluating the performance of transportation networks. Journal of Transport Geography, 14(3), 215-227.

Sullivan, J. L., Novak, D. C., Aultman-Hall, L., & Scott, D. M. (2010). Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: a link-based capacity-reduction approach. Transportation Research Part A, Policy and Practice, 44(5), 323-336.

Tampère, C. M. J., Stada, J., Immers, B., Peetermans, E., & Organe, K. (2008). Methodology for identifying vulnerable sections in a national road network. Transportation Research Record: Journal of the Transportation Research Board, 2012(1), 1-10.

Taylor, M. A., Sekhar, S. V., & D’Este, G. M. (2006). Application of accessibility-based methods for vulnerability analysis of strategic road networks. Networks and Spatial Economics, 6(3-4), 267-291.

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning and Control, 27(5), 408-420.

Thorisson, H., & Lambert, J. H. (2017). Multiscale identification of emergent and future conditions along corridors of transportation networks. Reliability Engineering & System Safety, 167, 255-263.

Transportation Research Board – TRB. (1998). Travel estimation techniques for urban planning (NCHR Report, 365). Washington: TRB.

Wang, X. (2005). Integrating GIS, simulation models, and visualization in traffic impact analysis. Computers, Environment and Urban Systems, 29(4), 471-496.

Yin, Y., & Lawphongpanich, S. (2006). Internalizing emission externality on road networks. Transportation Research Part D, Transport and Environment, 11(4), 292-301.

5d1b91420e88251d25b687d5 production Articles
Links & Downloads


Share this page
Page Sections