Equilíbrio espacial de preços com estoque regulador
Spatial price equilibrium with buffer stock
Possamai, Janaína Poffo; Pescador, Andresa; Mayerle, Sergio Fernando
http://dx.doi.org/10.1590/S0103-65132014005000020
Production, vol.24, n4, p.861-871, 2014
Resumo
Este trabalho apresenta o problema de equilíbrio espacial de preços para produtos sazonais num ambiente de competição perfeita sujeito a estoque regulador sem banda de preços. O problema é formulado como um modelo de programação não linear. A solução é obtida com o uso de um algoritmo de projeções, o qual é aplicado a um caso numérico ilustrativo. Os resultados são discutidos e, para fins de comparação, são confrontados com o caso em que não existe o estoque regulador.
Palavras-chave
Equilíbrio em redes. Programação não linear. Método do gradiente projetado
Abstract
This paper presents the problem of spatial equilibrium prices for seasonal products in an environment of perfect competition subject to buffer stock without bands. The problem is formulated as a nonlinear programming model. The solution is obtained using a projection algorithm, which is applied to a numerical illustrative case. The results are discussed and compared with the case in which there is no buffer stock.
Keywords
Network equilibrium. Nonlinear programming. Gradient projection methods
References
Athanasiou, G., Karafyllis, I., & Kotsios, S. (2008). Price stabilization using buffer stocks. Journal of Economic Dynamics & Control,32, 1212-1235. http://dx.doi.org/10.1016/j.jedc.2007.05.004
Bertsekas, D. P. (1999). Nonlinear Programming. Belmont: Athena Scientific.
Brennan, D. (2003). Price dynamics in the Bangladesh rice market: implications for public intervention. Agricultural Economics, 29, 15-25. http://dx.doi.org/10.1111/j.1574-0862.2003.tb00144.x
Edwards, R., & Hallwood, C. P. (1980). The Determination of Optimum Buffer Stock Intervention Rules. Quarterly Journal of Economics, 94, 151-166.
Harker, P. T. (1986). Alternative Models of Spatial Competition. Operational Research,34(3), 410-425. http://dx.doi.org/10.1287/opre.34.3.410
Jha, S., & Srinivasan, P. V. (2001). Food inventory policies under liberalized trade. International Journal of Production Economics,71(1-3), 21-29. http://dx.doi.org/10.1016/S0925-5273(00)00104-3
Nagurney, A. (1999). Network Economics - A Variational Inequality Approach (revised 2nd ed). Boston: Kluwer Academic Publishers.
Prasad, K. N., Banouei, A. A., & Swaminathan, A. M. (1992). Weather-induced instability in agricultural produce with respect to buffer stocks in India and Iran: an integrated optimization and dynamic input-output model. International Journal of Production Economics, 26(1-3), 89-97. http://dx.doi.org/10.1016/0925-5273(92)90050-H
Samuelson, P. A. (1952). Spatial Price Equilibrium and Linear Programming. American Economic Review, 42, 283-303.
Sutopo, W., Nur Bahagia, S., Cakravastia, A., & Arisamadhi, T. M. A. (2008). A Buffer stock Model to Stabilizing Price of Commodity under Limited Time of Supply and Continuous Consumption. Proceedings of The 9th Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS), Bali.
Takayama, T., & Judge, G. G. (1971). Spatial and Temporal Price and Allocation Models. North Holland: Amsterda.
Wolfe, P. (1959). The Simplex Method for Quadratic Programming. Econometrica, 27, 382-398.