Production
https://prod.org.br/article/doi/10.1590/S0103-65132014005000020
Production
Article

Equilíbrio espacial de preços com estoque regulador

Spatial price equilibrium with buffer stock

Possamai, Janaína Poffo; Pescador, Andresa; Mayerle, Sergio Fernando

Downloads: 0
Views: 943

Resumo

Este trabalho apresenta o problema de equilíbrio espacial de preços para produtos sazonais num ambiente de competição perfeita sujeito a estoque regulador sem banda de preços. O problema é formulado como um modelo de programação não linear. A solução é obtida com o uso de um algoritmo de projeções, o qual é aplicado a um caso numérico ilustrativo. Os resultados são discutidos e, para fins de comparação, são confrontados com o caso em que não existe o estoque regulador.

Palavras-chave

Equilíbrio em redes. Programação não linear. Método do gradiente projetado

Abstract

This paper presents the problem of spatial equilibrium prices for seasonal products in an environment of perfect competition subject to buffer stock without bands. The problem is formulated as a nonlinear programming model. The solution is obtained using a projection algorithm, which is applied to a numerical illustrative case. The results are discussed and compared with the case in which there is no buffer stock.

Keywords

Network equilibrium. Nonlinear programming. Gradient projection methods

References



Athanasiou, G., Karafyllis, I., & Kotsios, S. (2008). Price stabilization using buffer stocks. Journal of Economic Dynamics & Control,32, 1212-1235. http://dx.doi.org/10.1016/j.jedc.2007.05.004

Bertsekas, D. P. (1999). Nonlinear Programming. Belmont: Athena Scientific.

Brennan, D. (2003). Price dynamics in the Bangladesh rice market: implications for public intervention. Agricultural Economics, 29, 15-25. http://dx.doi.org/10.1111/j.1574-0862.2003.tb00144.x

Edwards, R., & Hallwood, C. P. (1980). The Determination of Optimum Buffer Stock Intervention Rules. Quarterly Journal of Economics, 94, 151-166.

Harker, P. T. (1986). Alternative Models of Spatial Competition. Operational Research,34(3), 410-425. http://dx.doi.org/10.1287/opre.34.3.410

Jha, S., & Srinivasan, P. V. (2001). Food inventory policies under liberalized trade. International Journal of Production Economics,71(1-3), 21-29. http://dx.doi.org/10.1016/S0925-5273(00)00104-3

Nagurney, A. (1999). Network Economics - A Variational Inequality Approach (revised 2nd ed). Boston: Kluwer Academic Publishers.

Prasad, K. N., Banouei, A. A., & Swaminathan, A. M. (1992). Weather-induced instability in agricultural produce with respect to buffer stocks in India and Iran: an integrated optimization and dynamic input-output model. International Journal of Production Economics, 26(1-3), 89-97. http://dx.doi.org/10.1016/0925-5273(92)90050-H

Samuelson, P. A. (1952). Spatial Price Equilibrium and Linear Programming. American Economic Review, 42, 283-303.

Sutopo, W., Nur Bahagia, S., Cakravastia, A., & Arisamadhi, T. M. A. (2008). A Buffer stock Model to Stabilizing Price of Commodity under Limited Time of Supply and Continuous Consumption. Proceedings of The 9th Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS), Bali.

Takayama, T., & Judge, G. G. (1971). Spatial and Temporal Price and Allocation Models. North Holland: Amsterda.

Wolfe, P. (1959). The Simplex Method for Quadratic Programming. Econometrica, 27, 382-398.
5883a4547f8c9da00c8b489e production Articles
Links & Downloads

Production

Share this page
Page Sections