Production
https://prod.org.br/article/doi/10.1590/S0103-65132014005000008
Production
Article

Incentivos econômicos e projeto de supply chain para captura e sequestro de carbono: caso Brasil

Price incentive for developing a carbon capture and storage supply chain network: a Brazilian case study

Gonzalez, Ernesto del Rosario S.

Downloads: 0
Views: 777

Resumo

Neste artigo, analisamos uma estratégia para reduzir as emissões de carbono que combina simultaneamente a criação de políticas de incentivo econômico e o desenvolvimento de uma infraestrutura de rede para captura e sequestro de carbono (CCS). Propomos um modelo de otimização linear inteira mista que considera aspectos técnicos e teóricos e permite analisar simultaneamente os efeitos de estabelecer preços para as emissões de carbono (carbon tax) em conjunto com uma estratégia de implementação de uma rede de supply chain para capturar, transportar e sequestrar CO2 em reservatórios geológicos. Apresentamos resultados para o caso da indústria de cimento do Brasil usando CO2 tax estabelecidas atualmente em outros países.

Palavras-chave

Captura e sequestro de carbono. Preço emissão carbono. Otimização linear. Supply chain

Abstract

In this study, we analyze a strategy to reduce carbon emissions that combines the creation of an economic incentive policy and the deployment of a network infrastructure for carbon capture and storage (CCS). We propose a mixed-integer linear optimization model that integrates technical and economic aspects and allows simultaneous analysis of the effects of establishing a price for carbon emissions (i.e., a carbon tax) and a strategy for developing a supply chain network that can capture, transport and sequester CO2 in geological reservoirs. We present the results for a case study of the Brazilian cement industry using a CO2 tax currently established in other countries.

Keywords

Carbon capture and storage. Carbon emission price. Linear optimization. Supply chain

References



Energy, E. (2010). CO2 Pipeline Infraestructure: An analysis of global challenges and opportunities. Cambridge.

Energy Information Administration - EIA. (2011). Electric Power Annual 2010. EIA. Retrieved from http://www.eia.gov/electricity/capacity/.

Furman, J., Bordoff, J. E., Deshpande, M., & Noel, P. J. (2007). An Economic Strategy to Address Climate Change and Promote Energy Security. Hamilton Project Strategy Paper.

Gollowitzer, S., & Ljubić, I. (2011). MIP models for connected facility location: A theoretical and computational study. Computers & Operations Research, 38(2), 435-449. http://dx.doi.org/10.1016/j.cor.2010.07.002

Han, J.-H., & Lee, I.-B. (2011). Development of a Scalable and Comprehensive Infrastructure Model for Carbon Dioxide Utilization and Disposal. Industrial & Engineering Chemistry Research, 50(10), 6297-6315. http://dx.doi.org/10.1021/ie200344t

International Energy Agency. (2005). Energy Policies of IEA Countries – Norway- 2005 Review. Retrieved from http://www.iea.org/.

Keating, G. N., Middleton, R. S., Stauffer, P. H., Viswanathan, H. S., Letellier, B. C., Pasqualini, D., Pawar, R. J., & Wolfsberg, A. V. (2011). Mesoscale carbon sequestration site screening and CCS infrastructure analysis. Environmental Science & Technology, 45(1), 215-22. http://dx.doi.org/10.1021/es101470m

Klibi, W., Martel, A., & Guitouni, A. (2010). The design of robust value-creating supply chain networks: A critical review. European Journal of Operational Research, 203(2), 283-293. http://dx.doi.org/10.1016/j.ejor.2009.06.011

Klokk, Ø., Schreiner, P. F., Pagès-Bernaus, A., & Tomasgard, A. (2010). Optimizing a CO2 value chain for the Norwegian Continental Shelf. Energy Policy, 38(11), 6604-6614. http://dx.doi.org/10.1016/j.enpol.2010.06.031

Kuby, M. J., Bielicki, J. M., & Middleton, R. S. (2011). Optimal Spatial Deployment of CO2 Capture and Storage Given a Price on Carbon. International Regional Science Review, 34(3), 285-305. http://dx.doi.org/10.1016/j.egypro.2011.02.185

Kuby, M. J., Middleton, R. S., & Bielicki, J. M. (2011). Analysis of cost savings from networking pipelines in CCS infrastructure systems. Energy Procedia, 4, 2808-2815. http://dx.doi.org/10.1016/j.egypro.2011.02.185

Massachusetts Institute of Technology – MIT. (2007). Carbon Capture and Sequestration Technologies Program - CCSTP. MIT CO2 Pipeline Transport and Cost Model Version 1. Boston.

Massachusetts Institute of Technology – MIT. (2009). Carbon Capture and Sequestration Technologies Program - CCSTP. Carbon Management GIS: CO2 Pipeline Transport Costs Estimation. Boston.

Massachusetts Institute of Technology – MIT. (2011). Carbon Capture and Sequestration Technologies - CCS TECHNOLOGIES. Sleipner Fact Sheet: Carbon Dioxide Capture and Storage Project. Retrieved from http://sequestration.mit.edu/tools/projects/sleipner.html.

Melkote, S., & Daskin, M. S. (2001). Capacitated facility location-network design problems. European Journal of Operational Research, 129, 481-495. http://dx.doi.org/10.1016/S0377-2217(99)00464-6

Middleton, R. S., & Bielicki, J. M. (2009a). A comprehensive carbon capture and storage infrastructure model. Energy Procedia, 1(1), 1611-1616. http://dx.doi.org/10.1016/j.egypro.2009.01.211

Middleton, R. S., & Bielicki, J. M. (2009b). A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy, 37(3), 1052-1060. http://dx.doi.org/10.1016/j.enpol.2008.09.049

Middleton, R. S., Kuby, M. J., Wei, R., Keating, G. N., & Pawar, R. J. (2012). A dynamic model for optimally phasing in CO2 capture and storage infrastructure. Environmental Modelling & Software, 37, 193-205. http://dx.doi.org/10.1016/j.envsoft.2012.04.003

Morbee, J., Serpa, J., & Tzimas, E. (2012). Optimised deployment of a European CO2 transport network. International Journal of Greenhouse Gas Control, 7, 48-61. http://dx.doi.org/10.1016/j.ijggc.2011.11.011

Pacala, S., & Socolow, R. (2004). Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science, 305(5686), 968-72. http://dx.doi.org/10.1126/science.1100103

Rockett, G. C., Machado, C. X., Ketzer, J. M. M., & Centeno, C. I. (2011). The CARBMAP project: Matching CO2 sources and geological sinks in Brazil using geographic information system. Energy Procedia, 4, 2764-2771. http://dx.doi.org/10.1016/j.egypro.2011.02.179

Sindicato Nacional da Indústria do Cimento - SNIC. (2012). Retrieved from http://www.snic.org.br/.

Strachan, N., Hoefnagels, R., Ramírez, A., van den Broek, M., Fidje, A., Espegren, K., Seljom, P., Blesl, M., Kober, T., & Grohnheit, P. E. (2011). CCS in the North Sea region: A comparison on the cost-effectiveness of storing CO2 in the Utsira formation at regional and national scales. International Journal of Greenhouse Gas Control, 5(6), 1517-1532. http://dx.doi.org/10.1016/j.ijggc.2011.08.009

Van Den Broek, M., Brederode, E., Ramírez, A., Kramers, L., Kuip, M., Wildenborg, T., Turkenburg, W., & Faaij, A. (2010). Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model. Environmental Modelling & Software, 25(12), 1754-1768. http://dx.doi.org/10.1016/j.envsoft.2010.06.015

Yohe, G. W., Lasco, R. D., Ahmad, Q. K., Arnell, N. W., Cohen, S. J., Hope, C., Janetos, A. C., & Perez, R. T. (2007). Perspectives on climate change and sustainability. In: M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. Van Der L. & Hanson, C. E. (Ed.), Climate Change 2007: Impacts, Adaptation and Vulnerability (pp. 811-841). University Cambridge. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

Zegura, E. W., Calvert, K. L., & Donahoo, M. J. (1997). A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Transactions on Networking, 5(6), 770-783. http://dx.doi.org/10.1109/90.650138
5883a4517f8c9da00c8b4895 production Articles
Links & Downloads

Production

Share this page
Page Sections