Extensão do modelo hipercubo para análise de sistemas de atendimento médico emergencial com prioridade na fila
Hypercube model extension for the analysis of emergencial medical systems with priority queue
Souza, Regiane Maximo de; Morabito, Reinaldo; Chiyoshi, Fernando Y.; Iannoni, Ana Paula
http://dx.doi.org/10.1590/S0103-65132013005000028
Production, vol.24, n1, p.1-12, 2014
Resumo
Em alguns sistemas de atendimento médico emergencial, a demanda pelo serviço pode ser alta devido ao atendimento a pacientes em diferentes estados, desde mais graves até mais leves. Nesses sistemas, pode haver formação de filas de usuários aguardando atendimento, e a necessidade de se considerar explicitamente políticas de prioridade nesse atendimento torna-se importante. Neste trabalho propõe-se uma extensão do clássico modelo hipercubo de filas espacialmente distribuídas para considerar fila com prioridade. Para verificar a viabilidade e a aplicabilidade dessa abordagem, utilizam-se dados de um estudo de caso realizado no SAMU de Ribeirão Preto-SP. Foram analisados dois cenários que consideram dois aspectos relevantes: o impacto dos atendimentos de remoção de pacientes e o aumento da demanda nas diversas classes de chamados dos usuários do sistema. O foco é no tempo médio de resposta aos chamados dos usuários, considerado como uma medida de desempenho importante do sistema, principalmente aos chamados de classes com alta prioridade. Os resultados mostram que a abordagem pode ser utilizada para analisar satisfatoriamente sistemas com prioridade de fila.
Palavras-chave
Modelo hipercubo. Prioridade na fila. SAMU. Atendimento médico emergencial
Abstract
In some emergency medical systems the service demand is high due to the treatment of patients in the range severe to mild. In these systems, may be queues formation and so the need to explicitly consider priority in care is extremely important. In this study we extend the hypercube model to explicitly consider priority queue. In order to verify the feasibility and applicability of this approach, we conducted a case study at Ribeirão Preto´s SAMU (SAMU-RP). We analyzed two alternative scenarios to examine two important issues: the impact of the removals and the effect of increased demand in the different classes of calls of the system. The focus is on the average response time to users, considered as an important performance measure of the system, especially for the high priority calls. The results show that the approach can be successfully used to analyze systems with priority queue.
Keywords
Hypercube queuing model. Priority queue. SAMU. Emergency medical system
References
ATKINSON, J. B. et al. Heuristic methods for the analysis of a queuing system describing emergency medical service deployed along a highway. Cybernetics and Systems Analysis, v. 42, n. 3, p. 379-391, 2006. http://dx.doi. org/10.1007/s10559-006-0075-6
ATKINSON, J. B. et al. A hypercube queueing loss model with customer-dependent service rates. European Journal of Operational Research, v. 191, p. 223-239, 2008. http:// dx.doi.org/10.1016/j.ejor.2007.08.014
BANKS, J. Handbook of Simulation. Atlanta: John Wiley & Sons, 1998. p. 3-389. http://dx.doi. org/10.1002/9780470172445
BRANDEAU, M.; LARSON, R. C. Extending and applying the hypercube queueing model to deploy ambulances in Boston. In: SWERSEY, A. J.; INGNALL, E. J. (Eds.). Delivery of Urban Services. Elsevier, 1986. p. 121-153. (TIMS Studies in the Management Science, n. 22).
BOFFEY, B.; GALVÃO, R. D.; ESPEJO, L. G. A. A review of congestion models in the location of facilities with immobile servers. European Journal of Operational Research, v. 178, p. 643-662, 2007. http://dx.doi. org/10.1016/j.ejor.2006.04.044
BURWELL, T. H.; JARVIS, J. P.; McKNEW, M. A. Modeling co-located servers and dispatch ties in the hypercube model. Computers & Operations Research, v. 202, n. 2, p. 113-119, 1993. http://dx.doi.org/10.1016/0305- 0548(93)90067-S
CHELST, K. R.; BARLACH, Z. Multiple unit dispatches in emergency services: models to estimate system performance. Management Science, v. 272, n. 12, p. 1390-1409, 1981. http://dx.doi.org/10.1287/ mnsc.27.12.1390
CHIYOSHI, F.; GALVÃO, R. D.; MORABITO, R. O uso do modelo hipercubo na solução de problemas de localização probabilísticos. Gestão & Produção, v. 72, n. 2, p. 146- 174, 2000.
CHIYOSHI, F.; GALVÃO, R. D.; MORABITO, R. Modelo hipercubo: análise e resultados para o caso de servidores não-homogêneos. Pesquisa Operacional, v. 212, n. 2, p. 199-218, 2001.
GALVÃO, R. D.; MORABITO, R. Emergency service systems: The use of the hypercube queueing model in the solution of probabilistic location problems. International Transactions in Operational Research, v. 15, p. 525-549, 2008. http:// dx.doi.org/10.1111/j.1475-3995.2008.00654.x
IANNONI, A.; MORABITO, R. A discrete simulation analysis of a logistics supply system. Transportation Research Part E, v. 42, p. 191-210, 2006. http://dx.doi.org/10.1016/j. tre.2004.10.002
IANNONI, A. P.; MORABITO, R. A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways. Transportation Research E, v. 432, n. 6, p. 755-771, 2007. http://dx.doi. org/10.1016/j.ejor.2008.02.003
IANNONI, A. P.; MORABITO, R.; SAYDAM, C. An optimization approach for ambulance location and the districting of the response segments on highways. European Journal of Operational Research, v. 195, p. 528-542, 2009. http://dx.doi.org/10.1016/j.ejor.2008.02.003
KELTON, W. D.; SADOWSKI, R. P.; SADOWSKI, D. A Simulation with Arena. 2nd ed. New York: McGraw- Hill, 2002.
LARSON, R. C. Hypercube queuing model for facility location and redistricting in urban emergency services. Computers and Operations Research, v. 1, p. 67-95, 1974.
LARSON, R. C.; ODONI, A. R. Urban Operations Research. 2nd ed. Belmont: Dynamic Ideas, 2007. http:// dx.doi.org/10.1016/0305-0548(74)90076-8
LITTLE, J. D. A proof for the queueing formula: L = .. Operations Research, v. 9, p. 383-387, 1961. http:// dx.doi.org/10.1287/opre.9.3.383
MARIANOV, V.; RÍOS, M. A probabilistic quality of service constraint for a location model of switches in ATM communications networks. Annals of Operations Research, v. 96, p. 237-243, 2000. http://dx.doi. org/10.1023/A:1018955603355
MARIANOV, V.; SERRA, D. Probabilistic maximal covering location–allocation for congested system. Journal of Regional Science, v. 38, p. 401-424, 1998. http://dx.doi. org/10.1111/0022-4146.00100
MARIANOV, V.; SERRA, D. Location-allocation of multipleserver service centers with constrained queues or waiting times. Annals of Operations Research, v. 111, p. 35-50, 2003. http://dx.doi.org/10.1023/A:1020989316737
MENDONÇA, F.; MORABITO, R. Analysing emergency medical service ambulance deployment on a Brazilian highway using the hypercube model. Journal of the Operational Research Society, v. 52, p. 261-270, 2001. http://dx.doi. org/10.1057/palgrave.jors.2601097
MORABITO, R.; CHIYOSHI, F.; GALVÃO, R. Non-homogeneous servers in emergency medical systems: practical applications using the hypercube queuing model. Socio- Economic Planning Sciences, v. 42, p. 255-270, 2008. http://dx.doi.org/10.1016/j.seps.2007.04.002
SACKS, S. R.; GRIEF, S. Orlando Police Department uses OR/
MS methodology, new software to design patrol districts. Baltimore: OR/MS Today, 1994. p. 30-32.
SOUZA, R. M. Análise da configuração de SAMU utilizando modelo hipercubo com prioridade na fila e múltiplas alternativas de localização de ambulâncias. 2010. Tese (Doutorado em Engenharia de Produção)-Universidade Federal de São Carlos, São Carlos, 2010.
SOUZA, R. M. et al. Análise da configuração de SAMU utilizando múltiplas alternativas de localização de ambulâncias. Gestão & Produção, v. 12, n. 3, p. 333-345, 2010. http://dx.doi.org/10.1590/S0104- 530X2005000300005
SWERSEY, A. J. Handbooks in OR/MS. Amsterdam: Elsevier Science B.V., 1994. v. 6, p. 151-200.
TAKEDA, R. A.; WIDMER, J. A.; MORABITO, R. Analysis of ambulance decentralization in an urban emergency medical service using the hypercube queueing model. Computers & Operations Research, v. 34, p. 727- 741, 2007. http://dx.doi.org/10.1016/j.cor.2005.03.022
WHITT, W. A review of and extensions. Queueing Systems, v. 9, p. 235-268, 1991. http://dx.doi.org/10.1007/BF01158466