Princípios para o projeto de sistemas de medição de desempenho em segurança e saúde no trabalho: a perspectiva da engenharia de resiliência
Principles for designing health and safety performance measurement systems: insights from resilience engineering
Saurin, Tarcisio Abreu; Famá, Camila Campos; Formoso, Carlos Torres
http://dx.doi.org/10.1590/S0103-65132012005000072
Prod, vol.23, n2, p.387-401, 2013
Resumo
Embora a medição de desempenho seja um elemento importante da gestão da segurança e saúde no trabalho (SST), ela costuma ser usada de forma reducionista, enfatizando o papel de dados quantitativos e não sendo orientada por uma explícita filosofia de SST. Este artigo apresenta oito princípios para o projeto de sistemas de medição de desempenho em SST (SMDSST), os quais possuem, como característica distintiva, o alinhamento com o paradigma da engenharia de resiliência. O uso dos princípios é ilustrado por meio de um estudo de caso, no qual o SMDSST de uma construtora foi avaliado por meio de técnicas qualitativas de coleta de dados. Com base nesse estudo, foram identificadas oportunidades de melhoria no SMDSST, que ilustram a utilidade prática dos princípios, bem como foram propostas recomendações para a avaliação do uso dos mesmos em SMDSST já existentes.
Palavras-chave
Medição de desempenho. Segurança e saúde no trabalho. Engenharia de resiliência. Construção civil
Abstract
Although performance measurement is widely recognized as an important health and safety (HS) management practice, it is usually implemented with a reductionist view, emphasizing quantitative data and not adopting an explicit HS philosophy. This study presents eight principles for designing HS performance measurement systems (HSPMS), which have, as a distinctive feature, the adoption of resilience engineering as their underlying paradigm. The use of the principles is illustrated by a case study of the HSPMS of a construction company, in which qualitative data collection techniques were privileged. A set of improvement opportunities was identified in the investigated HSPMS, pointing out how practical insights might be derived from using the principles. Furthermore, the case study provided a basis on which recommendations for assessing the use of the principles in existing HSPMS were drawn.
Keywords
Performance measurement. Health and safety at work. Resilience engineering. Construction industry
References
AHMAD, K.; GIBB, A. Towards effective safety performance measurement: evaluation of existing techniques and proposals for the future. In: ROWLINSON, S. (Ed.). Construction Safety Management Systems. London: Routledge, 2004. p. 425-442.
BAKER, J. The Report of the BP US Refineries Independent Safety Review Panel. BP U.S. Refineries Independent Safety Review Panel, 2007.
BALLARD, G. The Last Planner System of Production Control. 2000. Thesis (Doctor of Philosophy)-School of Civil Engineering, University of Birmingham, Birmingham, 2000.
BOURNE, M. et al. Designing, implementing and updating performance measurement systems. International Journal of Operations & Production Management, v. 20, n. 7, p. 754-771, 2000. http://dx.doi.org/10.1108/01443570010330739
CAMERON, I.; DUFF, R. Use of performance measurement and goal setting to improve construction managers´ focus on health and safety. Construction Management and Economics, v. 25, n. 8, p. 869-881, 2007. http://dx.doi.org/10.1080/01446190701268848
CILLIERS, P. Complexity, deconstruction and relativism. Theory, Culture & Society, v. 22, n. 5, p. 255-267, 2005. http://dx.doi.org/10.1177/0263276405058052
CILLIERS, P. Complexity and Postmodernism: understanding complex systems. London: Routledge, 1998.
CLEGG, C. Sociotechnical principles for system design. Applied Ergonomics, v. 31, p. 463-477, 2000. http://dx.doi.org/10.1016/S0003-6870(00)00009-0
COSTA, D. et al. Benchmarking initiatives in the construction industry: lessons learned and improvement opportunities. Journal of Management in Engineering, v. 22, p.158-167, 2006. http://dx.doi.org/10.1061/(ASCE)0742-597X(2006)22:4(158)
COSTELLA, M.; SAURIN, T. A.; GUIMARÃES, L. B. M. A method for assessing health and safety management systems from the resilience engineering perspective. Safety Science, v. 47, n. 8, p. 1056-1067, 2009. http://dx.doi.org/10.1016/j.ssci.2008.11.006
DEKKER, S. Drift into Failure: from hunting broken components to understanding complex systems. London: Ashgate, 2011.
DEKKER, S. Just Culture: balancing safety and accountability. London: Ashgate, 2007.
DEKKER, S. The Field Guide to Understanding Human Error. Burlington: Ashgate, 2006.
ENDSLEY, M. Toward a theory of situation awareness in dynamic systems. Human Factors, v. 37, n. 1, p. 32-64, 1995. http://dx.doi.org/10.1518/001872095779049543
ELECTRIC POWER RESEARCH INSTITUTE - EPRI. Business Performance Indicators for Nuclear Asset Management. Palo Alto: Electric Power Research Institute, 2006.
FAMÁ, C. et al. Critérios de análise de indicadores de segurança e saúde no trabalho: um estudo exploratório. In: SIMPÓSIO BRASILEIRO DE GESTÃO E ECONOMIA DA CONSTRUÇÃO - SIBRAGEC, 4., 2009, João Pessoa. Anais... Universidade Federal da Paraíba, 2009.
HENDRICK, H. W.; KLEINER, B. M. Macroergonomics: an introduction to work system design. Santa Monica: Human Factors and Ergonomics Society, 2001.
HINZE, J.; GODFREY, R. An evaluation of safety performance measures for construction projects. Journal of Construction Research, v. 4,1, p. 5-15, 2003. http://dx.doi.org/10.1142/S160994510300025X
HINZE, J. Making Zero Injuries a Reality. Report 160. Gainesville: Construction Industry Institute, 2002.
HOLLNAGEL, E. The four cornerstones of resilience engineering. In: NEMETH, C.; HOLLNAGEL, E.; DEKKER, S. (Eds.). Resilience Engineering Perspectives: preparation and restoration. Burlington: Ashgate, 2009. p. 117-133. v. 2.
HOLLNAGEL, E.; NEMETH, C. P.; DEKKER, S. Resilience Engineering Perspectives: remaining sensitive to the possibility of failure. Burlington: Ashgate, 2008. v. 1.
HOLLNAGEL, E.; WOODS, D. D.; LEVESON, N. Resilience Engineering: concepts and precepts. London: Taylor & Francis, 2006.
HOLLNAGEL, E.; WOODS, D. Joint Cognitive Systems: foundations of cognitive systems engineering. Boca Raton: Taylor & Francis, 2005. http://dx.doi.org/10.1201/9781420038194
HOPKINS, A. Thinking about process safety indicators. Safety Science, v. 47, n. 4, p. 460-465, 2009. http://dx.doi.org/10.1016/j.ssci.2007.12.006
HEALTH AND SAFETY EXECUTIVE - HSE. Developing Process Safety Indicators: a step-by-step guide for chemical and major hazards industries. London: HSE books, 2006.
KONGSVIK, T.; ALMKLOV, P.; FENSTAD, J. Organisational safety indicators: some conceptual considerations and a supplementary qualitative approach. Safety Science, v. 48, n. 10, p. 1402-1411, 2010. http://dx.doi.org/10.1016/j.ssci.2010.05.016
LUNDBERG, J.; ROLLENHAGEN, C.; HOLLNAGEL, E. What you find is not always what you fix - how other aspects than causes of accidents decide recommendations for remedial actions. Accident Analysis and Prevention, v. 42, p. 2132-2139, 2010. http://dx.doi.org/10.1016/j.aap.2010.07.003
LYNCH, R. L; CROSS, K. F. Measure up: yardsticks for continuous improvement. 2nd ed. Cambridge: Blackwell Business, 1995.
MITROPOULOS, T.; CUPIDO, G. The role of production and teamwork practices in construction safety: a cognitive model and an empirical study. Journal of Safety Research, v. 40, n. 4, p. 265-275, 2009. http://dx.doi.org/10.1016/j.jsr.2009.05.002
MOHAMED, S. Scorecard approach to benchmarking organizational safety culture in construction. Journal of Construction Engineering and Management, v. 129, n. 1, p. 80-88, 2003. http://dx.doi.org/10.1061/(ASCE)0733-9364(2003)129:1(80)
NEELY, A. et al. Designing performance measures: a structured approach. International Journal of Operations & Production Management, v. 17, n. 11, p. 1131-1152, 1997. http://dx.doi.org/10.1108/01443579710177888
NEMETH, C.; HOLLNAGEL, E.; DEKKER, S. Resilience Engineering Perspectives: preparation and restoration. Burlington: Ashgate, 2009. v. 2.
PAGE, S. The Difference: how the power of diversity creates better groups, firms, schools and societies. Princeton: Princeton University Press, 2007.
PERROW, C. Normal Accidents: living with high-risk technologies. Princeton: Princeton University Press, 1984.
RASMUSSEN, J. Risk management in a dynamic society: a modeling problem. Safety Science, v. 27, n. 2-3, p. 183-213, 1997. http://dx.doi.org/10.1016/S0925-7535(97)00052-0
REASON, J. Managing the Risks of Organizational Accidents. Burlington: Ashgate, 1997.
ROBSON, L. et al. The effectiveness of occupational health and safety management system interventions: a systematic review. Safety Science, v. 45, p. 329-353, 2007. http://dx.doi.org/10.1016/j.ssci.2006.07.003
ROCHLIN, G. Safe operation as a social construct. Ergonomics, v. 42, n. 11, p. 1549-1560, 1999. http://dx.doi.org/10.1080/001401399184884
SAURIN, T. A.; FORMOSO, C. T.; CAMBRAIA, F. B. An analysis of construction safety best practices from the cognitive systems engineering perspective. Safety Science, v. 46, n. 8, p. 1169-1183, 2008. http://dx.doi.org/10.1016/j.ssci.2007.07.007
SAURIN, T. A.; CARIM JUNIOR, G. Evaluation and improvement of a method for assessing HSMS from the resilience engineering perspective: a case study of an electricity distributor. Safety Science, v. 49, n. 2, p. 355-368, 2011. http://dx.doi.org/10.1016/j.ssci.2010.09.017
SAURIN, T. A.; FORMOSO, C. T.; GUIMARÃES, L. B. M. Safety and production: an integrated planning and control model. Construction Management and Economics, v. 22, n. 2, p. 159-169, 2004. http://dx.doi.org/10.1080/0144619042000201367
SINK D. S.; TUTTLE, T. C. Planejamento e medição para performance. Rio de Janeiro: Qualitymark, 1993.
SINK, D. S.; TUTTLE, T. C. Planning and Measurement in your Organization of the Future. Norcross: Industrial Engineering and Management Press, 1989.
WEICK, K.; SUTCLIFFE, K. Managing the unexpected: assuring high performance in an age of complexity. San Francisco: Jossey-Bass, 2001.