Production
https://prod.org.br/article/doi/10.1590/S0103-65132011005000031
Production
Article

Economic-statistical design of variable parameters non-central chi-square control chart

Projeto econômico-estatístico de gráficos de controle qui-quadrado não-central com parâmetros variáveis

Magalhães, Maysa Sacramento de; Moura Neto, Francisco Duarte

Downloads: 0
Views: 1007

Abstract

Production processes are monitored by control charts since their inception by Shewhart (1924). This surveillance is useful in improving the production process due to increased stabilization of the process, and consequently standardization of the output. Control charts keep track of a few key quality characteristics of the outcome of the production process. This is done by means of univariate or multivariate charts. Small improvements in control chart methodology can have significant economic impact in the production process. In this investigation, we propose the monitoring of a single variable by means of a variable parameter non-central chi-square control chart. The design of the chart is accomplished by means of optimizing a cost function. We use here a simulated annealing optimization tool, due to the difficulty of classical gradient based optimization techniques to handle the optimization of the cost function. The results show some of the drawbacks of using this model.

Keywords

Statistical process control. Economic design. Chi-square control chart. Variable parameters. Simulated annealing.

Resumo

Processos de produção são monitorados por gráficos de controle desde a sua introdução por Shewhart (1924). Este monitoramento é útil na melhoria do processo de produção devido à crescente estabilização do processo, e consequentemente, padronização do produto. Gráficos de controle mantêm vigilância de características de qualidade de um processo de produção. Isto é feito por intermédio de gráficos univariados ou multivariados. Melhorias na metodologia de gráficos de controle podem levar a um impacto econômico significativo no processo de produção. Neste artigo, propomos um gráfico de controle de parâmetros variáveis baseado na estatística qui-quadrado nãocentral para monitorar uma característica de qualidade de interesse. O projeto do gráfico é realizado através da otimização de uma função custo. O algoritmo simulated annealing é usado devido à dificuldade dos métodos clássicos de otimização baseados no gradiente, de lidarem com a otimização da função custo. Os resultados mostram algumas das dificuldades de se usar este modelo.

Palavras-chave

Controle estatístico de processos. Projeto econômico. Gráfico de controle qui-quadrado. Parâmetros variáveis. Simulated annealing

References



AMIN, R. W.; MILLER, R. W. A robustness study of charts with variable sampling intervals. Journal of Quality Technology, v. 25, p. 35-44, 1993.

CHEN, G.; CHENG, S. W.; XIE, H. Monitoring process mean and variability with one EWMA chart. Journal of Quality Technology, v. 33, n. 2, p. 223-233, 2001.

COSTA, A. F. B. Joint economic design of and R control charts for processes subject to two independent assignable causes. IIE Transaction, v. 25, p. 27-33, 1993. http://dx.doi.org/10.1080/07408179308964325

COSTA, A. F. B. Charts with variable sample size. Journal of Quality Technology, v. 26, p. 155-163, 1994.

COSTA, A. F. B. charts with variable sample size and sampling intervals. Journal of Quality Technology, v. 29, p. 197‑204, 1997.

COSTA, A. F. B. Joint and R charts with variable parameters. IIE Transactions, v. 30, p. 505-514. 1998. http://dx.doi.org/10.1080/07408179808966490

COSTA, A. F. B. Joint and R charts with variable samples sizes and sampling intervals. Journal of Quality Technology, v. 31, p. 387-397, 1999.

COSTA, A. F. B.; RAHIM, M. A. Monitoring process mean and variability with one non-central chi-square chart. Journal of Applied Statistics, v. 31, n. 10, p. 1171-1183, 2004. http://dx.doi.org/10.1080/0266476042000285503

COSTA, A.F.B.; RAHIM, M. A. The Non-central Chi-square Chart with Two Stage Samplings. European Journal of Operation Research, v. 171, p. 64-73, 2006. http://dx.doi.org/10.1016/j.ejor.2004.09.027

DE MAGALHÃES, M. S.; EPPRECHT, E. K.; COSTA, A. F. B. Economic Design of a Vp X bar Chart. International Journal of Production Economics, v. 74, p. 191-200, 2001.

DE MAGALHÃES, M. S.; COSTA, A. F. B.; EPPRECHT, E. K. Constrained optimization model for the design of an adaptive chart. International Journal of Production Research, v. 40, n. 13, p. 3199-3218, 2002. http://dx.doi.org/10.1080/00207540210136504

DE MAGALHÃES, M. S.; MOURA NETO, F. D. Joint economic model for totally adaptive and R charts. European Journal of Operational Research, v. 161, p. 148-161, 2005. http://dx.doi.org/10.1016/j.ejor.2003.08.033

DE MAGALHÃES, M. S.; COSTA, A. F. B.; MOURA NETO, F. D. Adaptive control charts: A Markovian approach for processes subject to independent out-of-control disturbances. International Journal of Production Economics, v. 99, p. 236‑246, 2006.

JONES, L. L.; CASE, K. E. Economic Design of a Joint X- and R -Control Chart. IIE Transactions, v. 13, n. 2, p 182‑195, 1981. http://dx.doi.org/10.1080/05695558108974551

OHTA, H.; KIMURA, A.; RAHIM A. An economic model for X-bar and R charts with time-varying parameters. Quality and Reliability Engineering International, v. 18, n. 2, p. 131-139, 2002. http://dx.doi.org/10.1002/qre.454

PRABHU, S. S.; MONTGOMERY, D. C.; RUNGER, G. C. A combined adaptive sample size and sampling interval control scheme. Journal of Quality Technology, v. 26, n. 3, p. 164-176, 1994. http://dx.doi.org/10.1080/00207549308956906

PRABHU, S. S.; RUNGER, G. C.; KEATS, J. B. An adaptive sample size chart. International Journal of Production Research, v. 31, p. 2895-2909, 1993. http://dx.doi.org/10.1080/00207549308956906

RAHIM, M. A. Determination of optimal design parameters of joint and R charts. Journal of Quality Technology, v. 21, p. 65‑70, 1989.

RAHIM, M. A.; COSTA, A. F. B. Joint economic design of and R charts under Weibull shock models. International Journal of Production Research, v. 38, n. 13, p. 2871‑2889, 2000. http://dx.doi.org/10.1080/00207540050117341

REYNOLDS, M. R. Shewhart and EWMA variable sampling interval control charts with sampling at fixed times. Journal of Quality Technology, v. 28, p. 199-212, 1996.

REYNOLDS, M. R.; ARNOLD, J. C. Optimal one-sided Shewhart control charts with variable sampling intervals. Sequential Analysis, v. 8, p. 51-77, 1989. http://dx.doi.org/10.1080/07474948908836167

REYNOLDS, M. R.; ARNOLD, J. C.; BAIK, J. W. Variable sampling interval X charts in the presence of correlation. Journal of Quality Technology, v. 28, n. 1, p. 12-30, 1996.

REYNOLDS, M. R.; STOUMBOS, Z. G. Monitoring a proportion using CUSUM and SPRT control charts, in Frontiers in Statistical Quality Control. New York: Springer-Verlag, 2001. vol. 6.

ROSS, S. M. Applied probability models with optimization applications. San Francisco: Holden-Day, 1970.

RUNGER, G. C.; MONTGOMERY, D. C. Adaptive sampling enhancements for Shewhart control charts. IIE Transactions, v. 25, p. 41-51, 1993. http://dx.doi.org/10.1080/07408179308964289

RUNGER, G. C.; PIGNATIELLO, J. J. Adaptive sampling for process control. Journal of Quality Technology, v. 23, p. 135-155, 1991.

SANIGA, E. M. Joint statistical design of X and R control charts. Journal of Quality Technology, v. 23, n. 2, p.156‑162, 1989.

SHEWHART, W. A. The Application of Statistics as an Aid in Maintaining Quality of a Manufactured Product. Journal of the American Statistical Association, v. 20, n. 152, p. 546-548, 1952. http://dx.doi.org/10.2307/2277170

5883a3c37f8c9da00c8b4625 1574685864 Articles
Links & Downloads

Production

Share this page
Page Sections