Production
https://prod.org.br/article/doi/10.1590/S0103-65132011005000006
Production
Article

Gráficos de controle multivariados para monitoramento de processos não lineares em bateladas

Multivariate control charts for monitoring non-linear batch processes

Marcondes Filho, Danilo; Fogliatto, Flavio Sanson; Oliveira, Luiz Paulo Luna de

Downloads: 0
Views: 1005

Resumo

Processos industriais em bateladas são empregados com frequência na produção de certos itens. Tais processos disponibilizam uma estrutura de dados peculiar; diante disso, existe um crescente interesse no desenvolvimento de gráficos de controle multivariados mais apropriados para seu monitoramento. Investiga-se aqui uma abordagem recente que utiliza gráficos de controle baseados no método Statis. O Statis constitui-se em uma técnica exploratória que permite avaliar similaridade entre matrizes de dados. Entretanto, essa técnica considera a similaridade em um contexto linear, investigando estruturas de correlação lineares nos dados. Propõe-se neste artigo a utilização de gráficos de controle baseados no Statis em conjunto com kernels para monitoramento de processos com presença de não linearidades fortes. Através dos kernels, definem-se funções não lineares dos dados para melhor representação da estrutura a ser caracterizada pelo método Statis. Essa nova abordagem, denominada Kernel-Statis, é desenvolvida e avaliada utilizando dados de um processo simulado.

Palavras-chave

Controle multivariado da qualidade. Gráficos de controle. Processos em bateladas. Kernel. Método Statis.

Abstract

Industrial batch processes are widely used in the production of certain items. Such processes provide a peculiar data structure; therefore there is a growing interest in the development of customized multivariate control charts for their monitoring. We investigate a recent approach that uses control charts based on the Statis method. Statis is an exploratory technique for measuring similarities between data matrices. However, the technique only assesses similarities in a linear context, i.e. investigating structures of linear correlation in the data. In this paper we propose control charts based on the Statis method in conjunction with a kernel for monitoring processes in the presence of strong nonlinearities. Through kernels we define nonlinear functions of data for better representing the structure to be characterized by the Statis method. The new approach, named Kernel-Statis, is developed and illustrated using simulated data.

Keywords

Multivariate quality control. Control charts. Batch processes. Kernel. Statis method.

References



BOSER, B. E.; GUYON, I. M.; VAPNK, V. A training algorithm for optimal margin classifiers. In: ANNUAL WORKSHOP ON COMPUTATIONAL LEARNING THEORY, 15., 1992, Pittsburgh. Anais. ..

CHO, J. H. et al. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science, v. 60, p. 279-288, 2005.

CHOI, S. W.; MORRIS, J.; LEE, I.-B. Nonlinear multiscale modelling for fault detection and identification. Chemical Engineering Science, in press. doi: 10.1016/j.ces.2008.01.022, 2008.

CUI, P.; LI, J.; WANG, G. Improved kernel principal component analysis for fault detection. Expert Systems with Applications, v. 34, p. 1210-1219, 2008.

DONG, D.; MCAVOY, T. J. Nonlinear principal components analysis based on principal curves and neural networks. Computers and Chemical Engineering, v. 20, p. 65-78, 1996.

ESCOUFIER, Y. Three-mode data analysis: the STATIS method. In: FICHET, B.; LAURO, N. C. (Eds.). Methods for multidimencional data analysis. ECAS, 1987. p. 259-272.

FOGLIATTO, F. S.; NIANG, N. Controle multivariado de processos em batelada com duração variada. Revista Produção, v. 18, p. 240-259, 2008.

FOGLIATTO, F. S.; NIANG, N. Multivariate statistical control of batch processes with variable duration. In: INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT - IEEM, 2009, Hong Kong. Anais. ..

GENG, Z. Q.; ZHU, Q. X. Multiscale nonlinear principal component analysis (NLPCA) and its application for chemical process monitoring. Industrial and Engineering Chemistry Research, v. 44, p. 3585-3593, 2005.

HASTIE, T.; TIBSHIRANI, R.; FRIEDMAN, J. The elements of statistical learning - Data mining, inference, and prediction. New York: Springer Science, 2001.

HIDEN, H. G. et al. Nonlinear principal components analysis using genetic programming. Computers and Chemical Engineering, v. 23, p. 413-425, 1999.

JACKSON, J. E.; MUDHOLKAR, G. S. Control Procedures for Residuals Associated with Principal Component Analysis. Technometrics, v. 21, n. 3, p. 341-349, 1979.

JIA, F.; MARTIN, E. B.; MORRIS, A. J. Non-linear principal components analysis with application to process fault detection. Internacional Journal of Systems Science, v. 31, p. 1473-1487, 2001.

JOLLIFFE, I. T. Principal component analysis. 2nd ed. New York: Springer, 2004.

KOURTI, T. Multivariate dynamic data modeling for analysis and statistical process control of batch process, start-ups and grade transitions. Journal of Chemometrics, v. 17, p. 93-109, 2003.

KOURTI, T.; MacGREGOR, J. F. Multivariate SPC Methods for Process and Product Monitoring. Journal of Quality Technology, v. 28, n. 4, p. 409-428, 1996.

KRAMER, M. A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, v. 37, p. 233-243, 1991.

LAVIT, C. et al. The ACT (STATIS method). Computational Statistics & Data Analysis, v. 19, p. 97-119, 1994.

LEE, J.; YOO, C. K.; LEE, I.-B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, v. 59, p. 223-234, 2004.

LEE, J-M. et al. Fault detection of batch processes using multiway kernel principal component analysis. Computers & Chemical Engineering, v. 28, p. 1837-1847, 2004.

MacGREGOR, J. F. Using on-line process data to improve quality: challenges for statisticians. International Statistical Review, v. 65, p. 309-323, 1997.

MARTIN, E. B.; MORRIS, A. J. An overview of multivariate statistical process control in continuous and batch process performance monitoring. Transactions of the Institute of Measurement and Control, v. 18, n. 1, p. 51-60, 1996.

NOMIKOS, P.; MCGREGOR, J. F. Multivariate SPC charts for monitoring batch processes. Technometrics, v. 37, p. 41-59, 1995.

PATEL, V. A. A. Numerical Analysis. New York: Saunders College Publishing, 1993.

POGGIO, T. On optimal nonlinear associative recall. Biological Cybernetics, v. 19, p. 201-209, 1975.

SCEPI, G. Parametric and non parametric multivariate quality control charts. In: LAURO, C. et al. (Eds.). Multivariate Total Quality Control. Physica-Verlang, 2002. p. 163-189.

SCHOLKOPF, B.; SMOLA, A. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge: MIT Press, 2002.

SCHOLKOPF, B.; SMOLA, A.; MULLER, K. L. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, v. 10, p. 1299-1399, 1998.

ZANI, S.; RIANI, M.; CORBELLINI, A. Robust bivariate boxplots and multiple outlier detection. Computational Statistics & Data Analysis, v. 28, p. 257-270, 1998.

5883a3c77f8c9da00c8b4638 1574685864 Articles
Links & Downloads

Production

Share this page
Page Sections