Comparing Mingoti and Glória's and Niverthi and Dey's multivariate capability indexes
Comparando os coeficientes de capacidade multivariados de Mingoti e Glória e Niverthi e Dey
Mingoti, Sueli Aparecida; Glória, Fernando Augusto A.
http://dx.doi.org/10.1590/S0103-65132008000300014
Prod, vol.18, n3, p.598-608, 2008
Resumo
In this paper a comparison between Mingoti and Glória's (2003) and Niverthi and Dey's (2000) multivariate capability indexes is presented. Monte Carlo simulation is used for the comparison and some confidence intervals were generated for the true capability index by using bootstrap methodology.
Palavras-chave
Quality control, multivariate capability indexes, Monte Carlo, Bootstrap
Abstract
Neste artigo é apresentada uma comparação entre os índices de capacidade multivariados de Mingoti e Glória (2003) e Niverthi e Dey (2000). O método de simulação de Monte Carlo é utilizado na comparação, e intervalos de confiança para o verdadeiro valor do índice de capacidade do processo são construídos através da metodologia Bootstrap.
Keywords
Controle de qualidade, índices de capacidade multivariados, Monte Carlo, Bootstrap
References
BERNARDO, J. M.; IRONY, T. X. A general multivariate bayesian process capability index. Statistician, v. 45, n. 3, p. 487-502, 1996.
CHEN, H. A multivariate process capability index over a rectangular solid tolerance zone, Statistica Sinica, v. 4, n. 2, p. 749-758, 1994.
CHENG, S. W.; SPIRING, F. A. Assessing process capability: a bayesian approach. IEE Transactions, 21, p. 97-98, 1989.
EFRON, B.; TIBSHIRANI, R. J. An Introduction to the Bootstrap. New York: Chapman and Hall, 1993.
FOSTER, E. J.; BARTON, R. R.; GAUTAM, N.; TRUSS, L. T.; TEW, J. D. The process-oriented multivariate capability index. International Journal of Production Research, v. 43, n.10, p. 2135-2148, 2005.
GARTHWAITE, P. H.; JOLLIFFE, I. T.; JONES, B. Statistical inference. New York: Prentice Hall, 1995.
GLÓRIA, F. A. A. Uma avaliação do desempenho de núcleo-estimadores no controle de processos multivariados. Dissertação (Mestrado em Estatística). Universidade Federal de Minas Gerais, Departamento de Estatística. Belo Horizonte, 2006.
HAYTER, A. J.; TSUI, K-L. Identification and quantification in multivariate quality control problems. Journal of Quality Technology, v. 26, n. 3, p. 197-208, 1994.
JOHNSON, R. A.; WICHERN, D. W. Applied Multivariate Statistical Analysis. New Jersey: Prentice Hall, 2002.
KALGONDA, A. A.; KULKARNI, S. R. Multivariate quality control chart for autocorrelated processes. Journal of Applied Statistics, v. 31,n. 3, p. 317-327, 2004.
KOTZ, S.; JOHNSON, N. L. Process capability indexes-a review, 1992-2000. Journal of Quality Technology, v. 34, n. 1, p. 2-39, 2002.
MASON, R. L.; YOUNG, J. C. Multivariate Statistical Process Control with Industrial Applications. Pennsylvania: Siam and ASA, 2002.
MINGOTI, S. A.; GLÓRIA, F. A. A. Comparando os métodos paramétrico e não-paramétrico na determinação do valor crítico do teste estatístico de médias proposto por Hayter e Tsui. Produção, v. 15, n. 2, p. 251-262, 2005.
MINGOTI, S. A.; GLÓRIA, F. A. A. Uma proposta de modificação do índice de capacidade multivariado de Chen. In Anais do XXIII ENEGEP, Ouro Preto, Minas Gerais, 2003 (em cd-rom).
MONTGOMERY, D. C. Introduction to Statistical Quality Control. New York: John Wiley, 2001.
NIVERTHI, M.; DEY, D. K. Multivariate process capability: a bayesian perspective. Communications in Statistics-Simulation and Computation, 29, p. 667-687, 2000.
PEARN, W. L.; WANG, F. K.; YEN, C. H. Multivariate capability indices: distributional and inferential properties. Journal of Applied Statistics, v. 34, n. 8, p. 941-962, 2007.
PEARN, W. L.; WU, C. W. Production quality and yield assurance for processes with multiple independent characteristics. European Journal of Operational Research, v. 173, n. 2, p. 637-647, 2006.
POLANSKY, A. M. A smooth nonparametric approach to multivariate process capability. Technometrics, v. 43, n. 2, p. 199-211, 2001.
POLANSKY, A. M.; BAKER, E. R. Multistage plug-in bandwidth selection for kernel distribution function estimates. Journal of Statistical Computation and Simulation, v. 65, n. 1, p. 63-80, 2000.
SHAHRIARI, H.; HUBELE, N. F.; LAWRENCE, F. P. A multivariate process capability vector. In Proceedings of the 4th Industrial Engineering Research Conference, Institute of Industrial Engineers, p. 305-309, 1995.
TAAN, W.; SUBBAIHA, P.; LIDDY, J. W. A note on multivariate capability indexes. Journal of Applied Statistics, v. 20, n. 3, p. 339-351, 1993.
TAAN, P. F.; BARNETR, N. S. Capability indexes for multivariate processes. Technical report. Division of computation Mathematics and Science. Victoria University. Melbouurne, Australia, 1998.
VEEVERS, A. Viability and capability indexes for multiresponse processes. Journal of Applied Statistics, v. 25, n. 4, p. 545-558, 1998.
WANG, C. H. Constructing multivariate process capability indices for short-run production. International Journal of Advanced Manufacturing Technology, 26, p. 1306-1311, 2005.
WANG, F. K. Quality evaluation of a manufactured product with multiple characteristics. Quality and Reliability Engineering International, v. 22, n. 2, p. 225-236, 2006.
WANG, F. K.; HUBELE, N.F.; LAWRENCE, F. P.; MISKUKIN, J. O.; SHARIARI, H. Comparison of three multivariate process capability indexes. Journal of Quality Technology, v. 32, n. 3, p. 263-275, 2000.
ZHANG, N. Z. Estimating process capability indexes for autocorrelated data. Journal of Applied Statistics, v. 25, n. 4, p. 559-574, 1998.