Inventário de ciclo de vida da manufatura de seringas odontológicas
Life cycle inventory of dental syringes
Giannetti, Biagio F.; Almeida, Cecilia M. Villas Bôas de; Bonilla, Silvia H.; Ribeiro, Celso Munhoz
http://dx.doi.org/10.1590/S0103-65132008000100012
Prod, vol.18, n1, p.155-169, 2008
Resumo
Uma das formas mais integradas, completas e eficazes para a gestão ambiental de atividades produtivas é baseada no ciclo de vida do produto, sendo a Avaliação do Ciclo de Vida sua principal ferramenta. O produto avaliado é a seringa odontológica tipo Carpule. O objetivo é a realização do Inventário de Ciclo de Vida (ICV) simplificado da fabricação de seringas odontológicas tipo Carpule, visando quantificar o uso de energia elétrica e a emissão de resíduos sólidos desde a mineração até o descarte do produto. A estrutura metodológica está baseada nas normas da série NBR ISO 14.040 e ISO 14.040. As fronteiras do estudo incluem as etapas de mineração, beneficiamento e manufatura; a produção do polietileno que compõe o tubete e a embalagem da agulha; a produção do aço, utilizado na fabricação da agulha, e o uso do conjunto pelos dentistas. A unidade funcional utilizada é 106 (um milhão) de anestesias aplicadas. Na avaliação de melhorias, as soluções propostas permitem reduzir o consumo de energia elétrica em aproximadamente 20% na etapa de manufatura. A quantidade de resíduos sólidos pode ser reduzida de 40% na etapa de manufatura, o que corresponde a aproximadamente 6,50% do total de resíduos sólidos no ciclo de vida da seringa odontológica.
Palavras-chave
Life cycle inventory of dental syringes
Abstract
Among the methods proposed to environmental management of productive activities, Life Cycle Assessment is one of the most integrated, complete and efficacious. The product assessed is the dental carpule syringe. The aim of this work is to to perform a Streamlined Life Cycle Inventory (LCI) to quantify the electric energy consumption and the solid waste release from dental carpule syringes manufacture. The methodological structure is based on NBR ISO 14.040 and ISO 14.040 series. The LCI covers the syringe life cycle from mining to disposal. The limits of the system include the stages of copper and zinc mining and ore beneficiation; the production of polyethylene used for carpule and needle packing, the production of the steel for needles and syringe coils; and the use of the whole set by dentists. The functional unit was defined as 106 (one million) applied anaesthesies. During improvement assessment, the proposed solutions allow reducing the electric energy consumption at about 20% in the manufacture stage. The solid waste quantity may be reduced nearly 40% in the manufacture stage, corresponding to approximately 6.50 % of the total solid waste released during the whole life cycle of the dental carpule syringe.
Keywords
Life cycle inventory, dental carpule syringe, solid wastes, electricity consumption, dematerialization
References
AHBE, S.; BRAUNSCHWEIG, A.; MIILLER-WENK, R. Methodik fiir Okobilanzen auf der Basis Skologischer Optimierung, Schriftenreihe Umwelt Nr. 133. Bundesamt fur Umwelt, Wald und Landschaft. BUWAL, Berna, 1990.
AHMADI, A.; WILLIAMSON, B. H.; THEIS, T. L.; POWERS S. E. Life-cycle inventory of toner produced for xerographic processes, Journal of Cleaner Production, 11, p. 573-582, 2003.
ALTING, L.; LEGARTH, J. B. Life cycle engineering and design. Annals of the CIRP, v. 44, n. 2, 1995.
ANDERSSON, K.; OHLSSON, T.; OLSSON, P. Screening life cycle assessment (LCA) of tomato ketchup: a case study. Journal of Cleaner Production, 6, p. 277-288, 1998.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1996). NBR ISO 14001 Sistema de Gestão Ambiental – Especificação e diretrizes para uso. Brasil: ABNT. 22 p.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2001). NBR ISO 14040 Gestão Ambiental – Avaliação do ciclo de vida – Princípios e estrutura. Brasil: ABNT. Novembro. 10 p.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (1998) NBR ISO 14041: Gestão ambiental: Avaliação do Ciclo de Vida: definições de escopo e análise do inventário. Rio de Janeiro.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2004) NBR ISO 14042: Gestão ambiental: Avaliação do Ciclo de Vida: avaliação do impacto do ciclo de vida. Rio de Janeiro.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (2005) NBR ISO 14043: Gestão ambiental: Avaliação do Ciclo de Vida: interpretação do ciclo de vida. Rio de Janeiro.
AYRES, R. U.; AYRES, L. W.; RÅDE, I. The Life Cycle of Copper, its Co-Products and By-Products, report commissioned by the MMSD (Mining, Minerals and Sustainable Development) project of IIED (International Institute for Environment and Development), World Business Council for Sustainable Development (WBCSD), 2002.
AZAPAGIC, A.; CLIFT, R. The application of life cycle assessment to process optimization. Computers and Chemical Engineering, 23, p. 1509-1526, 1999.
BOUSTEAD, I. Ecoprofiles of the European plastics industry, POLYOLEFINS, a report for the Technical and Environmental Centre of the Association of Plastics Manufacturers in Europe (APME). APME, Brussels, 2003.
BURGESS, A. A., BRENNAN, D. J., Application of life cycle assessment to chemical processes. Chemical Engineering Science, 56, p. 2589-2604, 2001.
CEDERBERG, C.; MATTSSON, B. Life cycle assessment of milk production - a comparison of conventional and organic farming, Journal of Cleaner Production, 8, p. 49-60, 2000.
CFO – Conselho Federal de Odontologia, http://www.cfo.org.br/index.htm. acesso em 2003.
CONAMA. Resolução nº 283 de 12 de julho de 2001.
DE SMET, B.; WHITE, P. R.; OWENS, J. W. Integrating Life Cycle Assessment within an Overall Framework for Environmental Management. Em CURRAN, M. A., Ed. Environmental Life Cycle Assessment, McGraw-Hill Companies, Nova Iorque, 1996.
FINNVEDEN, G. Methodological aspects of life cycle assessment of integrated solid waste management systems. Resources, Conservation and Recycling, 26, p. 173-187, 1999.
FINNVEDEN, G.; EKVALL, T. Life-cycle assessment as a decision-support tool - the case of recycling versus incineration of paper. Resources, Conservation and Recycling, 24, p. 235-256, 1998.
FURUHOLT, E. Life cycle assessment of gasoline and diesel. Resources, Conservation and Recycling, 141, p. 251-263, 1995.
GEORGAKELLOS, D. A. Evaluation of life cycle inventory results using critical volume aggregation and polygon-based interpretation. Journal of Cleaner Production, 13, p. 567-582, 2005.
IISI, Life Cycle Inventory Data for Steel Products, IISI – International Iron and Steel Institute, Bruxelas, 2000.
ISO, International Standardization Organization. Environmental Management–Life Cycle Assessment–Principles and Framework. International standard ISO 14040, 1. ed., Genebra: ISO, 1997.
ISO/TR14047, International Standardization Organization. Environmental Management – Life Cycle Impact Assessment – Examples of application of ISO 14042, Genebra: ISO, 2003.
NICOLETTI, G. M.; NOTARNICOLA, B.; TASSIELLI, G. Comparative Life Cycle Assessment of flooring materials: ceramic versus marble tiles. Journal of Cleaner Production, 10, p. 283-296, 2002.
PAPPAZAVVA S,; KIA, S.; CLAYA, J.; GUNTHER R. Characterization of automotive paints: an environmental impact analysis. Progress in Organic Coatings, 43, p. 193-206, 2001.
REPORT OF ENERGY AND ENVIRONMENTAL PROFILE OF THE U.S. Mining Industry, Office of Industrial Technologies, Office of Energy Efficiency and Renewable Energy, cap. 5, 2001a,
REPORT OF ENERGY AND ENVIRONMENTAL PROFILE OF THE U.S. Mining Industry, Office of Industrial Technologies, Office of Energy Efficiency and Renewable Energy, cap. 6, 2001b, http://www.eere.energy.gov/industry/mining/pdfs/miningbro06.pdf. Acesso em 2003.
RIBEIRO, C. M.; ALMEIDA, C. M. V. B.; GIANNETTI, B. F. Avaliação de ciclo de vida (ACV): uma ferramenta importante da ecologia industrial, Revista de Graduação da Engenharia Química, 11, p. 13-23, 2003. Acesso eletrônico:
RYDH, C. J.; SUN, M. Life cycle inventory data for materials grouped according to environmental and material properties. Journal of Cleaner Production, 13, p. 1258-1268, 2005.
SEYLER, C.; HOFSTETTER, T. B.; HUNGERBUHLER, K. Life cycle inventory for thermal treatment of waste solvent from chemical industry: a multi-input allocation model. Journal of Cleaner Production, 13, p. 1211-1224, 2005.
SILVA, G. A.; KULAY, L. A. Environmental performance comparison of wet and thermal routes for phosphate fertilizer production using LCA A Brazilian experience. Journal of cleaner production, Inglaterra, 13, p. 1219-1223, 2005.
SILVA, G. A.; BORGES, F. J. Life-cycle inventory of polyvinyl chloride manufacture in Brazil. SETA C Globe, Pensacola, 5, p. 60-61, 2004.
SILVA, G. A.; KULAY, L. A. Application of life cycle assessment to the LCA case studies single superphosphate production. The International Journal of Life Cycle Assessment. Landsberg, 8, p. 209-214, 2003.
SOMBEKKE, H. D. M.; VOORHOEVE, D. K.; HIEMSTRA P. Environmental impact assessment of groundwater treatment with nanofiltration. Desalination, 113, p. 293-296, 1997.
SEPPÄLA, J.; MELANEN, M.; JOUTTIJARVI, T., KAUPPI, L., LEIKOLA, N., Forest industry and the environment: a life cycle assessment study from Finland. Resources, Conservation and Recycling, 23, p. 87-105, 1998.
SEPPÄLA, J.; KOSKELA, S.; MELANEN, M.; PALPERI, M. The Finnish metals industry and the environment. Resources, Conservation and Recycling, 35, p. 61-76, 2002.
STEEN, B.; RYDING, S. O. The EPS enviro-accounting method. IVL Report B1080, Swedish Environmental Research Institute, Gothenburg, Suécia, 1992.
TILLMAN, A. M. Environmental Impact Assessment Review, 20, p. 113-123, 2000.
VERSCHOOR, A. H.; REIJNDERS, L. The use of life cycle methods by seven major companies. Journal of Cleaner Production, 7, p. 375-382, 1999.