Gráficos de controle de EWMA e de X-barra para monitoramento de processos autocorrelacionados
EWMA and X-bar control charts for the monitoring of autocorrelated processes
Claro, Fernando Antonio E.; Costa, Antonio Fernando B.; Machado, Marcela Aparecida G.
http://dx.doi.org/10.1590/S0103-65132007000300010
Prod, vol.17, n3, p.536-546, 2007
Resumo
Este artigo trata dos gráficos de controle de EWMA e de X-barra utilizados no monitoramento de processos cujas observações podem ser descritas por um modelo auto-regressivo de primeira ordem. Os gráficos são planejados levando em conta a correlação em série e utilizando-se o conceito de subgrupos racionais como estratégia de amostragem. As propriedades das cartas de controle são obtidas e comparadas. Os resultados numéricos mostram que a correlação positiva dentro dos subgrupos afeta o desempenho dos gráficos. O gráfico de EWMA é substancialmente mais ágil do que o gráfico de X-barra na detecção de perturbações no processo, especialmente quando tais perturbações geram pequenos desajustes na média.
Palavras-chave
Autocorrelação, número médio de amostras até o sinal, gráfico de controle da média móvel ponderada exponencialmente, modelo autoregressivo de primeira ordem, controle estatístico do processo
Abstract
In this paper the EWMA and the X-bar control charts are considered for monitoring processes in which the observations can be represented as a first order autoregressive model. The charts are designed taking the serial correlation into account and the sampling strategy is set based on the rational subgroup concept. The control charts properties are studied and compared. Numerical results show that the positive correlation within-subgroup has a significant impact on the charts performance. The EWMA chart is substantially more efficient than the X-bar chart in detecting process disturbances, especially when the mean shifts are of small magnitude.
Keywords
Autocorrelation, average run length, exponentially weighted moving average control chart, first order autoregressive model, statistical process control
References
ALWAN, L. C.; RADSON, D. Time-series investigation of subsample mean charts, IIE Transactions, v. 24 , p. 66-80, 1992.
ALWAN, L. C. The Problem of Misplaced Control Limits. Applied Statistics, v. 44, p. 269-278, 1995.
ATIENZA, O. O.; TANG, L. C.; ANG, B. W. A SPC procedure for detecting level shifts of autocorrelated processes, Journal of Quality Technology, v. 30, p. 340-350, 1998.
ÇINLAR, E. Introduction to Stochastics Processes, 1. ed., New Jersey: Prentice Hall, 1975, 402 p.
COSTA, A. F. B.; EPPRECHT, E. K.; CARPINETTI; L. C. R. Controle Estatístico de Qualidade. 2. ed. São Paulo: Editora Atlas, 334 p., 2005.
ENGLISH, J. R.; LEE, S.-C.; MARTIN, T. W.; TILMON, C. Detecting changes in autoregressive processes with X-bar and EWMA charts. IIE Transactions, v. 32, p. 1103-1113, 2000.
FALTIN, F.; MASTRANGELO, C. M.; RUNGER, G. C.; RYAN, T. P. Considerations in the monitoring of autocorrelated and independent data. Journal of Quality Technology, v. 29 , p. 131-133, 1997.
GILBERT, K.C.; KIRBY, K.; HILD, C.R.; Charting autocorrelated data: guidelines for practitioners; Quality Engineering, v. 9, p. 367-382; 1997.
HARRIS, T. J.; ROSS, W. H. Statistical Process Control procedures for correlated observations. The Canadian Journal of Chemical Engineering, v. 69, p. 48-57, 1991.
KNOTH, S.; AMIN, R. W. Autocorrelation and tolerance limits. Journal of Statistical Computation and Simulation, v. 73, p. 467-489, 2003.
KOEHLER, A. B.; MARKS, N. B.; OCONNELL, R. T. EWMA control charts for autoregressive processes. Journal of the Operational Research Society, v. 52, p. 699-707, 2001.
LU, C.-W.; REYNOLDS, M. R. Jr.; EWMA control charts for monitoring the mean of autocorrelated processes. Journal of Quality Technology, v. 31, p. 166-188, 1999.
MONTGOMERY, D. C. Introduction to Statistical Quality Control, 4. ed., New York: John Wiley and Sons, 674 p., 2001.
MONTGOMERY, D. C.; MASTRANGELO, C. M. Some statistical process control methods for autocorrelated data. Journal of Quality Technology, v. 23, p. 179-193, 1991.
MORETTIN, P. A.; TOLOI, C. M. C. Analise de Séries Temporais. 1. ed. São Paulo: Editora Edgard Blucher Ltda., 535 p., 2004.
RAMOS, A. W.; HO, L. L. Procedimentos inferênciais em índices de capacidade para dados autocorrelacionados via bootstrap. Produção, v. 13, p. 50-62, 2003.
REYNOLDS, M. R. Jr.; LU, C.-W. Control charts for monitoring processes with autocorrelated data. Nonlinear Analysis, Theory, Methods & Applications, v. 30, p. 4059-4067, 1997.
RUNGER, C. G.; WILLEMAIN, T. R. Model-based and Model-Free control of autocorrelated process. Journal of Quality Technology, v. 27, p. 283-292, 1995.
RUNGER, C. G.; WILLEMAIN, T. R. Batch-means control charts for autocorrelated data. IIE Transactions, v. 28, p. 483-487, 1996.
SACCUCI, M. S.; LUCAS, J. L. Average run lengths for Exponentially Weighted Moving Average control schemes using the Markov chain approach. Journal of Quality Technology, v. 22, p. 154-162, 1990.
SUPERVILLE, C. R.; ADAMS, B. M. An evaluation of forecast-based quality control schemes. Communications in Statistics-Simulation and computation, v. 23, p. 645-661, 1994.
TESTIK, M. C. Model Inadequacy and Residual Control Charts for autocorrelated processes. Quality and Reliability Engineering International, v. 21, p. 115-130, 2004.
TIMMER, D. H.; PIGNATIELLO JR., J. J.; LONGNECKER, M. T. Applying an AR(1) CUSUM control chart to data from a chemical process. Quality Engineering, v. 13, p. 107-114, 2000-01.
VAN BRACKLE, III, L. N., REYNOLDS, M. R. Jr. EWMA and CUSUM control charts in the presence of correlation, Communication in Statistics - Simulation and computation, v. 26, p. 979-1008, 1997.
VANDER WIEL, S. A. Monitoring processes that wander using integrated moving average models. Technometrics, v. 38, p. 139-151, 1996.
VASILOPOULOS, A. V.; STAMBOULIS, A. P. Modification of control charts limits in the presence of data correlation. Journal of Quality Technology, v. 10, p. 20-30, 1978.
WARDELL, D. G.; MOSCOWITZ, H.; PLANTE, R. D. Run-Length distributions of special-cause control charts for correlated processes. Technometrics, v. 36, p. 3-17, 1994.
ZHANG, N. F. Detection capability of residual control chart for stationary process data; Journal of Applied Statistics, v. 24, p. 475-492, 1997.
ZHANG, N. F. Estimating process capability indexes for autocorrelated data. Journal of Applied Statistics, v. 25, p. 559-574, 1998.