Production
https://prod.org.br/article/doi/10.1590/S0103-65132007000300009
Production
Article

Otimização conjunta de gráficos de X-barra – S ou X-barra – R: um procedimento de fácil implementação

Joint optimization of X-bar – S or X-bar – R charts: an easily implemented procedure

Epprecht, Eugenio Kahn; Leiras, Adriana

Downloads: 0
Views: 1272

Resumo

Este trabalho desenvolve um modelo para escolha ótima dos parâmetros de operação de gráficos de X-barra e R (ou de X-barra e S) que minimiza a razão entre o custo de amostragem e a rapidez de detecção de desvios na média ou aumentos na dispersão do processo. Admitem-se três formas alternativas para o problema: minimizar os tempos médios de sinalização sob uma restrição ao custo de amostragem; minimizar esse custo sob uma restrição aos tempos de sinalização; e o problema multiobjetivo de minimizar o custo e os tempos de sinalização. Restrições adicionais são permitidas, para tratar de variantes do problema encontráveis na prática. O procedimento evita a complexidade dos modelos de projeto econômico usuais. São detalhados métodos para determinação dos poucos parâmetros de especificação e entrada exigidos pelo modelo. Um exemplo mostra que o procedimento é de fácil aplicação. Tudo isto aumenta sua aplicabilidade para um grande espectro de situações práticas típicas.

Palavras-chave

Controle estatístico de processos, gráficos de controle, projeto semi-econômico, otimização, multiobjetivo

Abstract

A model is developed for optimum choice of the operation parameters for X-bar - R (or X-bar - S) charts, which minimizes the ratio of sampling costs to detection speed of shifts in the process mean or increases in the process dispersion. Three alternative problem formulations are allowed: minimization of the average time to signal subject to a sampling cost constraint; minimization of the sampling cost subject to a constraint on the average times to signal; and multi-objective optimization of both the average time to signal and the sampling cost. Through optional additional constraints, several practical variants of the problem are admitted. The procedure avoids the complexity of usual economic design models, and methods for determining the values for the few input and specification parameters required are given in detail. An example shows that the procedure is easy to apply. All these features increase its applicability for a wide range of typical practical situations.

Keywords

Statistical process control, control charts, semi-economic design, optimization, multi-objective

References



ASTOLFI, C. N. N.; HAMACHER, F. C. Projeto Ótimo de Gráficos de Controle por Atributos. Anais do XXXIV Simpósio Brasileiro de Pesquisa Operacional, Rio de Janeiro, 2002.

BAKER, K. R. Two processes in the economic design of an X-bar-chart. AIIE Transactions, v. 3, n. 4, p. 257-263, 1971.

CHIU, W. K. Economic Design of Attribute Control Charts. Technometrics, v. 17, n. 1, p. 81-87, 1975.

CHIU, W. K.; WETHERILL, G. B. Quality Control Practices. International Journal of Production Research, v. 13, p. 175-182, 1975.

COLLANI, E. v. Optimal Inspections Intervals. Mathematische Institut der Universität Würzburg, Preprint 351, 1985.

COLLANI, E. v. A Simple Procedure to Determine the Economic Design of an Control Chart. Journal of Quality Technology, v. 18. p. 145-151, 1986.

COLLANI, E. v. The Economic Design of X-bar-Control Charts. Proceedings of IASTED International Symposium on Reliability and Quality Control, Paris, p. 186-189, 1987.

COLLANI, E. v. Determination of the Economic Design of Control Charts. Optimization in Quality Control, eds. K.S. Al-Sultan and M.A Rahim, Kluwer Academic, Boston, 1997.

COSTA, A. F. B. Joint Economic Design of X-bar and R Control Charts for Processes Subject to Two Independent Assignable Causes. IIE Transactions, v. 25, n. 6, p. 23-27, 1993.

COSTA, A. F. B.; Epprecht, E. K.; CARPINETTI, L. C. R. Controle Estatístico de Qualidade. 2. ed. São Paulo: Atlas, 2005. 336 p.

DEL CASTILLO, E.; MONTGOMERY, D.C. Optimal Design of Control Charts for Monitoring Short Production Runs. Journal and Newsletter for Quality and Reliability, n. 8, v. 4, p. 225-240, 1993.

DUNCAN, A. J. The Economic Design of X-bar-Charts when there is a Multiplicity of Assignable Causes. Journal of the American Statistical Association, v. 66, p. 107-121, 1971.

DUNCAN, A. J. Quality Control and Industrial Statistics. 5. ed. Homewood, IL: Richard D. Irwin, 1986.

EHRGOTT, M.; GANDIBLEUX, X. A Survey and Annotated Bibliography of Multiobjective Combinatorial Optimization. OR Spektrum, v. 22, n. 4, p. 425-460, 2000.

EHRGOTT, M.; GANDIBLEUX, X.Multiple Criteria Optimization: State of the Art - Annotated Bibliographic Survey. Kluwer’s International Series in Operations Research and Management Science, v. 52, Kluwer Academic Publishers, Boston, 2002.

EPPRECHT, E. K.; NINIO, A. L.; DE SOUZA, M. O. Projeto Ótimo de Gráficos de Médias Móveis Ponderadas Exponencialmente (EWMA) para Controle Estatístico de Processo. Pesquisa Operacional, v. 18, n. 2, p. 109-130, 1998.

EPPRECHT, E. K.; SANTOS, A. B.: Um Método Simples para o Projeto Ótimo de Gráficos de X-bar. Gestão e Produção, v. 5, n. 3, p. 206-220, 1998.

EPPRECHT, E. K.; TEIXEIRA, R. B. M. Um Método Semi-Econômico para Otimização de Gráficos de Controle de Processos. Anais do XXXIII Simpósio Brasileiro de Pesquisa Operacional, Campos do Jordão, São Paulo, 2001.

GIBRA, I. N. Economically Optimal Determination of the Parameters of X-bar–Control Chart. Management Science, v. 17, p. 635-646, 1969.

GIBRA, I. N. Recent Developments in Control Chart Techniques. Journal of Quality Technology, v. 7, n. 4, p. 183-192, 1975.

GIBRA, I. N. Economically Optimal Determination of the Parameters of p-Control Chart. Journal of Quality Technology, v. 10, p. 12-19, 1978.

GIRSHIK, M. A.; RUBIN, H. A Bayes’ Approach to a Quality Control Model. Annals of Mathematical Statistics, v. 23, 1952.

HARTLEY, H. O. The Probability Integral of the Range in Samples of N Observations from a Normal Population: Numerical Evaluation of the Probability Integral. Biometrika, v. 32, p. 309-10, 1942.

HO, C.; CASE, K. E. Economic Design of Control Charts: a Literature Review for 1981-1991. Journal of Quality Technology, v. 26, n. 1, p. 39-53, 1994.

KEATS, J. B.; DEL CASTILLO, E.; COLLANI. E. v.; SANIGA, E. M. Economic Modeling for Statistical Process Control. A Discussion on Statistically-Based Process Monitoring and Control. Journal of Quality Technology, v. 29, n. 2, p. 144-162, 1997.

LADANY, S. P. Optimal Use of Control Charts for Controlling Current Production. Management Science, v.19, n.7, p. 763-772, 1973.

LADANY, S. P.; ALPEROVITCH, Y. An Optimal Set-up Policy for Control Charts. Omega, v. 3, p. 113-118, 1975.

LADANY, S. P.; BEDI, D. N. Selection of the Optimal Set-up Policy. Naval Research Logistics Quarterly, v. 23, p. 219-233, 1976.

LORENZEN, T. J.; VANCE, L. C. The Economic Design of Control Charts: a Unified Approach. Technometrics, v. 28, n.1, p.3-10, 1986.

MONTGOMERY, D. C., HEIKES, R. G.; MANCE, J. F. Economic Design of Fraction Defective Control Charts. Management Science, v. 21, n. 11, p. 1272-1284, 1975.

MONTGOMERY, D. C. The Economic Design of Control Charts: a Review and Literature Survey. Journal of Quality Technology, v. 12, n. 2, p. 75-87, 1980.

MONTGOMERY, D. C.: Introduction to Statistical Quality Control. John Wiley, 4. ed., 2001.

PEARSON, E. S. The Probability Integral of the Range in Samples of N Observations from a Normal Population: Foreword and Tables. Biometrika, v. 32, p. 301-8, 1942.

SANIGA, E. M. Joint Economically Optimal Design of X-bar and R Control Charts with Alternate Process Models. Management Science, v. 24, p. 420-431, 1977.

SANIGA, E. M.: Joint Economic Design of X-bar and R Control Charts with Alternate Process Models. AIIE Transactions, v. 11, p. 254-260, 1979.

SANIGA, E. M. Isodynes for X-bar and R Control Charts. Frontiers in Statistical Quality Control 2. In: LENZ H. L.; WETHERILL G. B.; WILRICH P-T (Eds.), Viena: Physica-Verlag, p. 268-273, 1984.

SANIGA, E. M.: Economic-Statistical Control Chart Design with an Application to X-bar and R Charts. Technometrics, v. 31, p. 313-320, 1989.

SANIGA, E. M.; DAVIS, D. J.; McWILLIAMS, T. P. Economic, Statistical and Economic-Statistical Design of Attribute Charts. Journal of Quality Technology, v. 27, p. 56-73, 1995.

SANIGA, E. M..; SHIRLAND, L. E. Quality Control in Practice: A Survey. Quality Progress, v. 10, p. 30-33, 1977.

SHEWHART, W. A.Economic Control of Quality of Manufactured Product. New York: Van Nostrand, 1931.

SVOBODA, L. Economic Design of Control Charts: a Review and Literature Survey (1979-1989). Statistical Process Control in Manufacturing, J. B. Keats e D. C. Montgomery (eds.), Marcel Dekker, New York, 1991.

TURNES, O.; HO, L. L. Effect of Process Variability on the Efficiency of X-bar-Control Chart Designs. Student, v. 5, n. 2, p. 97-111, 1977.

TURNES, O.; HO, L. L. Monitoring Process Mean and Process Variance Using Collani’s T02 Statistic. Economic Quality Control, v. 20, n. 2, p. 223-229, 2005.

TURNES, O.; HO, L. L.; IMANA, C. Comparison of Semi-Economic X-bar and X-bar-R Control Charts for Non-Ageing and Ageing Process. Economic Quality Control, v. 17, n. 1, p. 99-112, 2002.

TURNES, O.; HO, L. L.; IMAÑA, C. R. Planejamento Econômico de Gráficos de Controle X-bar e R para Processos Regenerativos e Não Regenerativos. Gestão e Produção, v. 11, n. 1, p. 91-100, 2004.

WEILER, D. J. On the most economical sample size for controlling the mean of a population. Annals of Mathematical Statistics, v. 23, p. 247-254, 1952.

WHEELER, D. J. Advanced Topics in Statistical Quality Control: The Power of Shewhart’s Charts. Knoxville: SPC Press, 1995.

WOODALL, W. H. The Statistical Design of Quality Control Charts. The Statistician, v. 34, p. 155-160, 1985.

WOODALL, W. H. Weaknesses of the economic design of control charts. Technometrics, v.28, n.4, p. 408-409, 1986.

5883a3ec7f8c9da00c8b46d7 1574685864 Articles
Links & Downloads

Production

Share this page
Page Sections