Modelo composto para prever demanda através da integração de previsões
Composed model to foresee demand through the integration of forecasts
Werner, Liane; Ribeiro, José Luis D.
http://dx.doi.org/10.1590/S0103-65132006000300011
Prod, vol.16, n3, p.493-509, 2006
Resumo
Realizar previsões de demanda é uma atividade importante na empresa, entretanto, usar uma única técnica para obtê-las pode não ser suficiente para incorporar todo o conhecimento associado ao ambiente de previsão. As formas de integração de previsões incorporam várias técnicas e têm mostrado potencial para reduzir o erro de previsão. Este trabalho apresenta uma modelagem que está estruturada utilizando: combinação de previsões e ajuste baseado na opinião. Os elementos incluídos na modelagem são: dados históricos; econômicos; e de especialistas. Após obter-se a previsão combinada, aplica-se um ajuste para obter a previsão final. O modelo proposto é ilustrado através de uma aplicação.
Palavras-chave
Previsão de demanda, combinação de previsões, ajuste baseado na opinião, opinião de especialistas, integração de previsões
Abstract
Demand forecasting is an important task in the companies, however the use of a single technique to produce forecasts might not be enough to gather all the knowledge associated with the forecast environment. The way to integrate forecasts incorporates various techniques and has show potential to reduce forecast error. This study presents a model that relies on the use of two means of integration: forecast combination and judgmental adjustment. The elements covered by the presented model are: historic data, economic data, and the opinion of experts. After obtaining the combined forecast, an adjustment based on the experts' opinion is applied to attain the final forecast. The model proposed is described in details and illustrated through a practical application.
Keywords
Demand forecasting, combination of forecasts, judgmental adjustment, experts opinion, integration of forecasts
References
ARMSTRONG, J. S. Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer Academic Publishers. 2001.
ARMSTRONG, J. S.; COLLOPY, F. Integration of Statistical Methods and Judgment of Time Series Forecasting: Principles for Empirical Research. In: WRIGHT, G. & GOODWIN, P. (Ed.) Forecasting with Judgment. Wiley & Sons, 1998. Disponível em: www-marketing.wharton.upenn.edu/ideas/pdf/ integ.pdf . Acesso em: 21/08/2003.
BATES, J. M.; GRANGER, C. W. J. The Combining of Forecasts. Operational Research Quarterly, v. 20, n. 4, 1969, p. 451-468.
BUNN, D. W.; SALO, A. A. Adjustment of Forecast with Model Consistent Expectations. International Journal of Forecasting, v. 12, 1996. p. 163-170.
CHAN, C. K.; KINGSMAN, B. G.; WONG, H. The Value of Combining Forecasts in Inventory Management – a Case Study in Banking. European Journal of Operational Research, v. 117, 1999, p. 199-210.
CLEMEN, R. T. Combining Forecasts: A Review and Annotated Bibliography. International Journal of Forecasting. v. 5, 1989, p. 559-583.
FLORES, B. E.; OLSON, D. L.; WOLFE, C. Judgemental Adjustment of Forecasts: A Comparison of Method. International Journal of Forecasting, v. 7, 1992, p. 421-433.
FLORES, B. E.; WHITE, E. M. A Framework for the Combination of Forecasts. Journal Academic Marketing Science, v. 16 (3-4), 1988, p. 95-103.
GOODWIN, P. Adjusting Judgemental Extrapolations using Theil's Method and Discounted Weighted Regression. Journal of Forecasting, v. 16, 1997, p. 37-46.
GOODWIN, P. Improving the Voluntary Integration of Statistical Forecasts and Judgement. International Journal of Forecasting, v. 16, 2000, p. 85-99.
GOODWIN, P. Integration Management Judgement and Statistical Methods to Improve Short-term Forecasts. Omega. The International Journal of Management Science, v. 30, 2002, p. 127-135.
GRANGER, C. W. J. & RAMANATHAN, R. Improved Methods of Forecasting. Journal of Forecasting, v. 3, 1984, p. 197-204.
MAHMOUD, E. Combining Forecasts: Some Managerial Issues. International Journal of Forecasting, v. 5, 1989, p. 599-600.
MAKRIDAKIS, S.; WHEELWRIGHT, S. C.; HYNDMAN, R. J. Forecasting. Methods and Applications. Third Edition. New York: John Wiley & Sons, 1998.
MARQUES, E. B.; ISSLER, J. V. Combinação de Previsões de Índices de Preços. Escola de Pós-Graduação em Economia. Fundação Getúlio Vargas, 2005.
NEWBOLD, P.; GRANGER, C. W. J. Experience with Forecasting Univariate Time Series and Combination of Forecasts. Journal Royal Statistical Society, series A, v. 137, n. 2, 1974, p.131-165.
PELLEGRINI, F.; FOGLIATTO, F. Estudo Comparativo entre os Modelos de Winters e de Box-Jenkins para Previsão de Demanda Sazonal. Produto & Produção. v. 4, n. especial, abril 2000, p. 72-85.
PEREIRA, B. B.; COQUEIRO, R. C. O.; PERROTA, A. H. V. Experience in Combining Subjetive and Quantitative Forecasts of Open Market Rates. Journal of Forecasting, v. 8, 1989, p. 343-348.
SAATY, T. L. Método de Análise Hierárquica. São Paulo: McGraw-Hill, 1991.
SANDERS, N. R. Accuracy of Judgmental Forecasts: A Comparison. Omega. The International Journal of Management Science, v. 20, n. 3, 1992, p. 353-364.
SANDERS, N. R.; RITZMAN, L. P. Judgmental Adjustment of Statistical Forecasts. In: ARMSTRONG, J. S. Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer Academic Publishers, 2001.
WEBBY, R.; O'CONNOR, M. Judgement and Statistical Time Series Forecasting: a Review of the Literature. International Journal of Forecasting, v. 12, 1996, p. 91-118.
WOLFE, C. How to Adjust Forecast with the Analytic Hierarchy Process. Journal of Business Forecasting Methods &systems, v. 7, n. 1, 1988. p. 13-17.
WRIGHT, G.; LAWRENCE, M. J.; COLLOPY, F. The Role and Validity of Judgement in Forecasting. International Journal of Forecasting, v. 12, 1996, p. 1-8.