Production
https://prod.org.br/article/doi/10.1590/S0103-65132003000300003
Production
Article

Métodos de medição de risco de mercado: um estudo comparativo

Market risk measurement methods: a comparative study

Costa, Paulo Henrique S.; Baidya, Tara Keshar N.

Downloads: 0
Views: 1029

Resumo

A modelagem do risco de mercado é de grande importância para as instituições financeiras e outras firmas que participam do mercado financeiro. Os modelos e técnicas empregados no Brasil nem sempre são os mais adequados às nossas condições específicas. Este trabalho estuda dez modelos de estimação de risco (volatilidade) usando dados de ações brasileiras, e faz uma aplicação em determinação de VaR.

Palavras-chave

Risco financeiro, volatilidade, processos estocásticos, modelos não-lineares

Abstract

Market risk modeling is very important to any company that participates of the financial market. Brazilian companies use models and techniques that not necessarily are the most suited for the features of the Brazilian markets. This paper compares ten risk (volatility) models, using Brazilian stock data, and uses them to determine VaR.

Keywords

Financial risk, volatility, stochastic processes, non linear models

References



BACHELIER, L. , "Theory of speculation" (1900), reprinted in Cootner, P. "The random character of stock market prices", 17-78, MIT Press : Cambridge, USA (1964).

BOLLERSLEV, T. "Generalized conditional heteroskedasticity" Journal of Econometrics, 31, 307-328 (1986).

BOX, G. E. P. e JENKINS, G. M. "Time series analysis forecasting and control", edição revista, Holden-Day, San Francisco, EUA (1976).

BROCK, W. , DECHERT, W. e SCHEINKMAN, J. "A test for independence based on the correlation dimension", working paper. Univ. of Wisconsin, Univ. of Houston and Univ. of Chicago (1987).

COSTA, P. H. S. , "Séries de retornos de ações brasileiras: volatilidade e valor em risco", tese de doutorado. PUC-Rio, Dep. Engenharia Industrial (2001).

DICKEY, D. A. e FULLER, W. A. , "Likelihood ratio tests for autoregressive series with a unit root" Econometrica 49, 1057-1072 (1981).

ENGLE, R. F. , "Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation" Econometrica, 50, 987-1007 (1982).

GRAY, S. F. "Modeling the conditional distribution of interest rates as a regime-switching process", Journal of Financial Economics, 42, 27-62 (1996).

HENTSCHEL, L. "All in the family: Nesting symmetric and asymmetric GARCH models". Journal of Financial Economics, 39, 71-104 (1995).

HSIEH, D. . "Implications of nonlinear dynamics for financial risk management", Journal of Financial and quantitative Analysis, 28.1, 41-64 (1993).

J. P. Morgan Bank. "RiskMetrics technical manual". New York: J. P. Morgan Bank (1995).

JARQUE, C. e BERA, A. , "A test for normality of observations and regression residuals". International Statistical Review, 55, 163-172 (1987).

KUPIEC, P. , "Futures margins and stock price volatility: is there any link?", Board of Governors of the Federal Reserve System, Finance and Economics Discussion Paper n. 104 (1990).

KUPIEC, P. "Techniques for verifying the accuracy of risk measurement models". Journal of Derivatives, 2, 73-84 (1995).

LJUNG, G. M. e BOX, G. E. P. "On a measure of the lack of fit in time series models", Biometrika 65, 297-303 (1978).

NELSON, D. B. "Conditional heteroskedasticity in asset returns: A new approach". Econometrica, 59, 347-370 (1991).

OSBORNE, M. M. , "Brownian motion in the stock market". Operations Research, 7, 145-173 (1959).

PARKINSON, M., "The extreme value method of estimating the variance of the rate of return". Journal of Business, 53, 61-65 (1980).

TAYLOR, S. J. "Modelling Financial; Time Series", John Wiley & Sons, USA (1986).

5883a40c7f8c9da00c8b476a 1574685864 Articles
Links & Downloads

Production

Share this page
Page Sections