Um índice de capacidade para especificações unilaterais
Process capability index for one-sided specification limit
Barriga, Gladys D. C.; Ho, Linda Lee; Borges, Wagner Sousa
http://dx.doi.org/10.1590/S0103-65132003000100004
Prod, vol.13, n1, p.40-49, 2003
Resumo
Nos últimos anos, índices de capacidade de processos têm sido usados freqüentemente para determinar se um processo é capaz de produzir itens em conformidade com a tolerância especificada. No entanto, poucos estudos têm sido feitos acerca de índices de capacidade para situações em que há apenas um limite de especificação. Neste trabalho, um índice para situações em que há apenas um limite de especificação é apresentado. Ele é invariante com respeito à fração não-conforme do processo e "calibrado" pelo índice Cpk,. São desenvolvidos também aspectos inferenciais, do ponto de vista bayesiano, para amostragem binomial.
Palavras-chave
Índices de capacidade, fração não-conforme, especificação unilateral, estatística bayesiana
Abstract
Process capability indices have become popular tools to describe how well a process can meet specified tolerances. However, little attention has been given to the study of these indices when the specified tolerances are one-sided. In this work we present an index for such situations. The proposed index is invariant with respect to process fraction non-conforming and it is "Cpk calibrated". Bayesian inference procedure under a binomial sampling is also developed and described for the proposed index.
Keywords
Process capability indices, Non-conforming fraction, One-sided specification limit, Bayesian analysis
References
BERNARDO, J.M & IRONY, T. Z. (1996). A general multivariate Bayesian process capability index. The Statistician, 45(3), 487-502.
BISSELL, A. F., (1990). How reliable is your capability index ?. Applied Statistics, 39(3), 331-340.
BORGES, W. S. & Ho, L. L. (2000). On the sampling distribution of Clement's capability index. Communication in Statistics - Simulation and Computation, 29(1), 121-38.
BORGES W. & Ho L. L. (2001). A fraction defective based capability index. Quality and Reliability Engineering International, 17, 447-58.
BOTHE, D. R. (1999). A capability index for multiple process streams. Quality Engineering, 11(4), 613-8.
BOYLES, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23(1), 17-26.
CHENG, S. W.(1994-95). Practical implementation of the process capability indices. Quality Engineering, 7(2), 239-59.
CHENG, S. W. & SPIRING, F. A. (1989). Assessing process capability: a Bayesian approach, IIE Transaction. 21, 97-8.
CHOI, K. C.; NAM, K. H. & PARK, D. H. (1996), Estimation of capability index based on bootstrap method, Microelectron. Reliabil. 36(9), 1141-53.
CHOU, Y.M. & OWEN, D. B. (1989). On the distribution of the estimated process capability indices. Communs. Statist. Theory Meth., 18, 4549-60.
GUPTA, A. K & KOTZ, S. (1997). A new process capability index. Metrika, 45, 213-24.
JOHNSON, T. (1992). The relationship of C_{pm} to square error loss, Journal of Quality Technology, 24(4), 211-5.
KAMINSKY, F. C.; DOVICH, R. A. & BURKE, R. J. (1998). Process capability indices: now and in the future. Quality Engineering, 10(3), 445-53.
KANE, V. E. (1986). Process capability indices, Journal of Quality Technology 18(1), 41-52.
KOTZ, S., JOHNSON, N.L. (1993). Process Capability Indices, Chapman and Hall, London.
KOTZ, S., PEARN, W. L, & JOHNSON, C.C. (1993). Some process capability indices are more reliable than one might think. Applied statistics, 42(1), 56-62.
PEARN, W. L. & CHEN, K. S. (1997). Capability indices for non-normal distributions with an application in Electrolytic Capacitor Manufacturing. Microelectron. Reliab., 37(12), 1853-8.
PEARN, W. L, & KOTZ, S. (1994). Application of Clement's method for calculating second and third generation process capability indices for non-normal Pearsonian populations. Quality Engineering, 7(1), 139-45.
PEARN, W. L., KOTZ, S. & JOHNSON, C.C. (1992). Distributions and inferential properties of process capability indices Journal of Quality Technology, 24(4) 216-33.