Production
https://prod.org.br/article/doi/10.1590/0103-6513.222916
Production
Research Article

A systematic literature review on the joint replenishment problem solutions: 2006-2015

Leonardo dos Santos Lourenço Bastos; Matheus Lopes Mendes; Denilson Ricardo de Lucena Nunes; André Cristiano Silva Melo; Mariana Pereira Carneiro

Downloads: 1
Views: 328

Abstract

Abstract: Among all existing inventory replenishment models, this research was dedicated to the Joint Replenishment Problem (JRP), which consists in the replenishment of multiple items simultaneously, aiming total cost reduction. Literature has presented several optimal and approximated solutions to this problem, with different applications and techniques, which results in a large quantity of solution proposals. Therefore, this research aimed to map existing solutions to the problem in 2006-2015 in order to provide a guide for interested parts in JRP and to update previous reviews. Hence, systematic review was used to assess papers from that period interval. From a total of 128 papers, a general trend for seeking JRP extensions and practical applications was verified. Furthermore, the heuristic and metaheuristic methods were the most used and considered the most suitable due to their simplicity in understanding and application.

Keywords

Inventory management, Multi-product, Joint replenishment problem, Systematic review

References

Abdul-Jalbar, B., Segerstedt, A., Sicilia, J., & Nilsson, A. (2010). A new heuristic to solve the one-warehouse N-retailer problem. Computers & Operations Research, 37(2), 265-272. http://dx.doi.org/10.1016/j.cor.2009.04.012.

Amaya, C. A., Carvajal, J., & Castaño, F. (2013). A heuristic framework based on linear programming to solve the constrained joint replenishment problem (C-JRP). International Journal of Production Economics, 144(1), 243-247. http://dx.doi.org/10.1016/j.ijpe.2013.02.008.

Anily, S., & Haviv, M. (2007). The cost allocation problem for the first order interaction joint replenishment model. Operations Research, 55(2), 292-302. http://dx.doi.org/10.1287/opre.1060.0346.

Atkins, D. R., & Iyogun, P. O. (1988). Periodic versus “can-order” policies for coordinated multi-item inventory systems. Management Science, 34(6), 791-796. http://dx.doi.org/10.1287/mnsc.34.6.791.

Balintfy, J. L. (1964). On a basic class of multi-item inventory problems. Management Science, 10(2), 287-297. http://dx.doi.org/10.1287/mnsc.10.2.287.

Bayindir, Z. P., Birbil, Ş. İ., & Frenk, J. B. G. (2006). The joint replenishment problem with variable production costs. European Journal of Operational Research, 175(1), 622-640. http://dx.doi.org/10.1016/j.ejor.2005.06.005.

Bayley, T. A., & Bookbinder, J. H. (2015). The dynamic family assignment heuristic. IFAC-PapersOnLine, 48(3), 1161-1166. http://dx.doi.org/10.1016/j.ifacol.2015.06.241.

Ben-Daya, M., As’ad, R., & Seliaman, M. (2013). An integrated production inventory model with raw material replenishment considerations in a three-layer supply chain. International Journal of Production Economics, 143(1), 53-61. http://dx.doi.org/10.1016/j.ijpe.2010.10.024.

Boctor, F. F., Laporte, G., & Renaud, J. (2004). Models and algorithms for the dynamic-demand joint replenishment problem. International Journal of Production Research, 42(13), 2667-2678. http://dx.doi.org/10.1080/00207540410001671660.

Buchbinder, N., Kimbrel, T., Levi, R., Makarychev, K., & Sviridenko, M. (2013). Online make-to-order joint replenishment model: primal-dual competitive algorithms. Operations Research, 61(4), 1014-1029. http://dx.doi.org/10.1287/opre.2013.1188.

Büyükkaramikli, N. C., Gürler, Ü., & Alp, O. (2013). Coordinated logistics: joint replenishment with capacitated transportation for a supply chain. Production and Operations Management, 23(1), 110-126. http://dx.doi.org/10.1111/poms.12041.

Cha, B. C., Moon, I. K., & Park, J. H. (2008). The joint replenishment and delivery scheduling of the one-warehouse, n-retailer system. Transportation Research Part E, Logistics and Transportation Review, 44(5), 720-730. http://dx.doi.org/10.1016/j.tre.2007.05.010.

Chen, J.-M., & Chen, T.-H. (2007). The profit-maximization model for a multi-item distribution channel. Transportation Research Part E, Logistics and Transportation Review, 43(4), 338-354. http://dx.doi.org/10.1016/j.tre.2005.12.001.

Coelho, L. C., & Laporte, G. (2014). Optimal joint replenishment, delivery and inventory management policies for perishable products. Computers & Operations Research, 47, 42-52. http://dx.doi.org/10.1016/j.cor.2014.01.013.

Cordeau, J.-F., Laganà, D., Musmanno, R., & Vocaturo, F. (2015). A decomposition-based heuristic for the multiple-product inventory-routing problem. Computers & Operations Research, 55, 153-166. http://dx.doi.org/10.1016/j.cor.2014.06.007.

Cui, L., Wang, L., & Deng, J. (2014). RFID technology investment evaluation model for the stochastic joint replenishment and delivery problem. Expert Systems with Applications, 41(4), 1792-1805. http://dx.doi.org/10.1016/j.eswa.2013.08.078.

Dror, M., Hartman, B. C., & Chang, W. (2012). The cost allocation issue in joint replenishment. International Journal of Production Economics, 135(1), 242-254. http://dx.doi.org/10.1016/j.ijpe.2011.07.015.

Durán, O., & Pozo, L. P. (2013). Solution of the spare parts joint replenishment problem with quantity discounts using a discrete particle swarm optimization technique. Studies in Informatics and Control, 22(4), 319-328.

Elomri, A., Ghaffari, A., Jemai, Z., & Dallery, Y. (2012). Coalition formation and cost allocation for joint replenishment systems. Production and Operations Management, 21(6), 1015-1027. http://dx.doi.org/10.1111/j.1937-5956.2012.01333.x.

Eynan, A., & Kropp, D. H. (2007). Effective and simple EOQ-like solutions for stochastic demand periodic review systems. European Journal of Operational Research, 180(3), 1135-1143. http://dx.doi.org/10.1016/j.ejor.2006.05.015.

Feng, H., Wu, Q., Muthuraman, K., & Deshpande, V. (2015). Replenishment policies for multi-product stochastic inventory systems with correlated demand and joint-replenishment costs. Production and Operations Management, 24(4), 647-664. http://dx.doi.org/10.1111/poms.12290.

Fiestras-Janeiro, M. G., García-Jurado, I., Meca, A., & Mosquera, M. A. (2011). Cooperative game theory and inventory management. European Journal of Operational Research, 210(3), 459-466. http://dx.doi.org/10.1016/j.ejor.2010.06.025.

Fung, R. Y. K., & Ma, X. (2001). A new method for joint replenishment problems. The Journal of the Operational Research Society, 52(3), 358-362. http://dx.doi.org/10.1057/palgrave.jors.2601091.

Goyal, S. K., & Deshmukh, S. G. (1993). Discussion A note on ‘The economic ordering quantity for jointly replenishing items’. International Journal of Production Research, 31(12), 2959-2961. http://dx.doi.org/10.1080/00207549308956910.

Gutiérrez, J., Colebrook, M., Abdul-Jalbar, B., & Sicilia, J. (2013). Effective replenishment policies for the multi-item dynamic lot-sizing problem with storage capacities. Computers & Operations Research, 40(12), 2844-2851. http://dx.doi.org/10.1016/j.cor.2013.06.007.

Hajji, A., Gharbi, A., Kenne, J.-P., & Pellerin, R. (2011). Production control and replenishment strategy with multiple suppliers. European Journal of Operational Research, 208(1), 67-74. http://dx.doi.org/10.1016/j.ejor.2010.08.010.

Hariga, M. (1994). Two new heuristic procedures for the joint replenishment problem. The Journal of the Operational Research Society, 45(4), 463-471. http://dx.doi.org/10.1057/jors.1994.64.

Hernández, S., Flores, I., & Vázquez, J. A. (2012). Improved golden-section algorithm for the multi-item replenishment problem. Journal of Applied Research and Technology, 10(3), 388-397.

Ho, W.-T. (2013). Determining the optimum ordering policy in multi-item joint replenishment problem using a novel method. Mathematical Problems in Engineering, 2013, 1-9. http://dx.doi.org/10.1155/2013/469794.

Ho, W.-T., Lai, S.-F., & Huang, Y.-K. (2014). An optimal mixed batch shipment policy for multiple items in a single-supplier multiple-retailer integrated system. Journal of Optimization Theory and Applications, 160(2), 636-658. http://dx.doi.org/10.1007/s10957-013-0280-1.

Hong, S. P., & Kim, Y.-H. (2009). A genetic algorithm for joint replenishment based on the exact inventory cost. Computers & Operations Research, 36(1), 167-175. http://dx.doi.org/10.1016/j.cor.2007.08.006.

Hoque, M. A. (2006). An optimal solution technique for the joint replenishment problem with storage and transport capacities and budget constraints. European Journal of Operational Research, 175(2), 1033-1042. http://dx.doi.org/10.1016/j.ejor.2005.06.022.

Hsiau, H.-J., & Lin, C.-W. R. (2009). An optimal supply policy for multi-product multi-retailer using simulated annealing method. International Journal of Business and Management, 4(12), 91-98. http://dx.doi.org/10.5539/ijbm.v4n12p91.

Hsu, S.-L. (2009). Optimal joint replenishment decisions for a central factory with multiple satellite factories. Expert Systems with Applications, 36(2), 2494-2502. http://dx.doi.org/10.1016/j.eswa.2008.01.069.

Huang, S., & Chen, J. (2007). Analytical study of multi-item joint replenishment problem. Systems Engineering Theory & Practice, 27(12), 90-95. http://dx.doi.org/10.1016/S1874-8651(08)60076-9.

Huang, S.-H., & Lin, P.-C. (2010). A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty. Transportation Research Part e: Logistics and Transportation Review, 46(5), 598-611. http://dx.doi.org/10.1016/j.tre.2010.01.006.

Johansen, S. G., & Melchiors, P. (2003). Can-order policy for the periodic-review joint replenishment problem. The Journal of the Operational Research Society, 54(3), 283-290. http://dx.doi.org/10.1057/palgrave.jors.2601499.

Jung, J., & Mathur, K. (2007). An efficient heuristic algorithm for a two-echelon joint inventory and routing problem. Transportation Science, 41(1), 55-73. http://dx.doi.org/10.1287/trsc.1060.0160.

Kang, H.-Y., Lee, A. H. I., & Lee, C.-H. (2013). A joint replenishment model under transportation batch and quantity discounts. New York: Global Business and Technology Association.

Karalli, S. M., & Flowers, A. D. (2011). The JRP with multiple replenishment sources and fill rates. California Journal of Operations Management, 9(2), 1-19.

Kaspi, M., & Rosenblatt, M. J. (1991). On the economic ordering quantity for jointly replenished items. International Journal of Production Research, 29(1), 107-114. http://dx.doi.org/10.1080/00207549108930051.

Kayiş, E., Bilgiç, T., & Karabulut, D. (2008). A note on the can-order policy for the two-item stochastic joint-replenishment problem. IIE Transactions, 40(1), 84-92. http://dx.doi.org/10.1080/07408170701246740.

Khouja, M., & Goyal, S. K. (2008). A review of the joint replenishment problem literature: 1989-2005. European Journal of Operational Research, 186(1), 1-16. http://dx.doi.org/10.1016/j.ejor.2007.03.007.

Kiesmüller, G. P. (2010). Multi-item inventory control with full truckloads: a comparison of aggregate and individual order triggering. European Journal of Operational Research, 200(1), 54-62. http://dx.doi.org/10.1016/j.ejor.2008.12.008.

Larsen, C. (2009). The Q(s,S) control policy for the joint replenishment problem extended to the case of correlation among item-demands. International Journal of Production Economics, 118(1), 292-297. http://dx.doi.org/10.1016/j.ijpe.2008.08.025.

Larsen, C., & Turkensteen, M. (2014). A vendor managed inventory Model using continuous approximations for route length estimates and Markov chain modeling for cost estimates. International Journal of Production Economics, 157, 120-132. http://dx.doi.org/10.1016/j.ijpe.2014.08.001.

Lee, F. C., & Yao, M. J. (2003). A global optimum search algorithm for the joint replenishment problem under power-of-two policy. Computers & Operations Research, 30(9), 1319-1333. http://dx.doi.org/10.1016/S0305-0548(02)00073-4.

Lee, L. H., & Chew, E. P. (2005). A dynamic joint replenishment policy with auto-correlated demand. European Journal of Operational Research, 165(3), 729-747. http://dx.doi.org/10.1016/j.ejor.2003.04.010.

Levi, R., Roundy, R. O., & Shmoys, D. B. (2006). Primal-dual algorithms for deterministic inventory problems. Mathematics of Operations Research, 31(2), 267-284. http://dx.doi.org/10.1287/moor.1050.0178.

Li, C., Gao, J., Zhang, T., & Wang, X. (2015). Differential evolution algorithm for constraint joint replenishment problem with indirect grouping strategy. International Journal of Hybrid Information Technology, 8(5), 259-266. http://dx.doi.org/10.14257/ijhit.2015.8.5.28.

Li, C., Xu, X., & Zhan, D. (2009). Solving joint replenishment problem with deteriorating items using genetic algorithm. Journal of Advanced Manufacturing Systems, 8(1), 47-56. http://dx.doi.org/10.1142/S0219686709001626.

Liang, Z., Zhao, F., & Cao, M. (2009). Algorithm of deterministic joint replenishment problem (pp. 2835-2843). Reston: ASCE. http://dx.doi.org/10.1061/40996(330)419.

Minner, S. (2009). A comparison of simple heuristics for multi-product dynamic demand lot sizing with limited warehouse capacity. International Journal of Production Economics, 118(1), 305-310. http://dx.doi.org/10.1016/j.ijpe.2008.08.034.

Minner, S., & Silver, E. A. (2005). Multi-product batch replenishment strategies under stochastic demand and a joint capacity constraint. IIE Transactions, 37(5), 469-479. http://dx.doi.org/10.1080/07408170590918254.

Minner, S., & Silver, E. A. (2007). Replenishment policies for multiple products with Compound-Poisson demand that share a common warehouse. International Journal of Production Economics, 108(1-2), 388-398. http://dx.doi.org/10.1016/j.ijpe.2006.12.028.

Moon, I. K., & Cha, B. C. (2006). The joint replenishment problem with resource restriction. European Journal of Operational Research, 173(1), 190-198. http://dx.doi.org/10.1016/j.ejor.2004.11.020.

Moon, I. K., Cha, B. C., & Kim, S. K. (2008). Offsetting inventory cycles using mixed integer programming and genetic algorithm. International Journal of Industrial Engineering: Theory, Applications and Practice, 15(3), 245-256.

Moon, I. K., Cha, B. C., & Lee, C. U. (2011). The joint replenishment and freight consolidation of a warehouse in a supply chain. International Journal of Production Economics, 133(1), 344-350. http://dx.doi.org/10.1016/j.ijpe.2009.10.030.

Nagarajan, V., & Shi, C. (2015). Approximation algorithms for inventory problems with submodular or routing Costs. Computer Research Repository, 160(1), 225-244. http://dx.doi.org/10.1007/s10107-016-0981-y.

Nagasawa, K., Irohara, T., Matoba, Y., & Liu, S. (2015). Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem. Industrial Engineering and Management Systems, 14(1), 1-10. http://dx.doi.org/10.7232/iems.2015.14.1.001.

Narayanan, A., & Robinson, P. (2010). Efficient and effective heuristics for the coordinated capacitated lot-size problem. European Journal of Operational Research, 203(3), 583-592. http://dx.doi.org/10.1016/j.ejor.2009.08.015.

Nielsen, C., & Larsen, C. (2005). An analytical study of the Q (s, S) policy applied to the joint replenishment problem. European Journal of Operational Research, 163(3), 721-732. http://dx.doi.org/10.1016/j.ejor.2004.02.003.

Nilsson, A., Segerstedt, A., & Sluis, E. V. D. S. (2007). A new iterative heuristic to solve the joint replenishment problem using a spreadsheet technique. International Journal of Production Economics, 108(1-2), 399-405. http://dx.doi.org/10.1016/j.ijpe.2006.12.022.

Nonner, T., & Souza, A. (2009). Approximating the joint replenishment problem with deadlines. Discrete Mathematics, Algorithms, and Applications, 1(2), 153-173. http://dx.doi.org/10.1142/S1793830909000130.

Olsen, A. L. (2005). An evolutionary algorithm to solve the joint replenishment problem using direct grouping. Computers & Industrial Engineering, 48(2), 223-235. http://dx.doi.org/10.1016/j.cie.2005.01.010.

Olsen, A. L. (2008). Inventory replenishment with interdependent ordering costs: an evolutionary algorithm solution. International Journal of Production Economics, 113(1), 359-369. http://dx.doi.org/10.1016/j.ijpe.2007.09.004.

Özkaya, B. Y., Gürler, Ü., & Berk, E. (2006). The stochastic joint replenishment problem: a new policy, analysis, and insights. Naval Research Logistics, 53(6), 525-546. http://dx.doi.org/10.1002/nav.20147.

Pantumsinchai, P. (1992). A comparison of three joint ordering inventory policies. Decision Sciences, 23(1), 111-127. http://dx.doi.org/10.1111/j.1540-5915.1992.tb00379.x.

Paul, S., Wahab, M. I. M., & Ongkunaruk, P. (2014). Joint replenishment with imperfect items and price discount. Computers & Industrial Engineering, 74, 179-185. http://dx.doi.org/10.1016/j.cie.2014.05.015.

Porras, E., & Dekker, R. (2006). An efficient optimal solution method for the joint replenishment problem with minimum order quantities. European Journal of Operational Research, 174(3), 1595-1615. http://dx.doi.org/10.1016/j.ejor.2005.02.056.

Porras, E., & Dekker, R. (2008). A solution method for the joint replenishment problem with correction factor. International Journal of Production Economics, 113(2), 834-851. http://dx.doi.org/10.1016/j.ijpe.2007.11.008.

Pourakbar, M., Farahani, R. Z., & Asgari, N. (2007). A joint economic lot-size model for an integrated supply network using genetic algorithm. Applied Mathematics and Computation, 189(1), 583-596. http://dx.doi.org/10.1016/j.amc.2006.11.116.

Praharsi, Y., Nataliani, Y., & Wee, H.-M. (2014). An innovative heuristic in multi-item replenishment problem for one warehouse and N retailers. Journal Teknik Industri, 16(1), 1-8. http://dx.doi.org/10.9744/jti.16.1.1-8.

Praharsi, Y., Purnomo, H. G., & Wee, H.-M. (2010). An innovative heuristic for joint replenishment problem with deterministic and stochastic demand. International Journal of Electronic Business Management, 8(3), 223-230.

Pukcarnon, V., Chaovalitwongse, P., & Phumchusri, N. (2014). The can-order policy for one-warehouse N-retailer inventory system: a heuristic approach. English Journal, 18(4), 53-72. http://dx.doi.org/10.4186/ej.2014.18.4.53.

Qinglong, G., Liang, L., Xu, C., & Zha, Y. (2008). A modified joint inventory policy for VMI systems. International Journal of Information Technology & Decision Making, 2(7), 225-240. http://dx.doi.org/10.1142/S0219622008002892.

Qu, H., Wang, L., & Liu, R. (2015). A contrastive study of the stochastic location-inventory problem with joint replenishment and independent replenishment. Expert Systems with Applications, 42(4), 2061-2072. http://dx.doi.org/10.1016/j.eswa.2014.10.017.

Qu, H., Wang, L., & Zeng, Y.-R. (2013). Modeling and optimization for the joint replenishment and delivery problem with heterogeneous items. Knowledge-Based Systems, 54, 207-215. http://dx.doi.org/10.1016/j.knosys.2013.09.013.

Roushdy, B., Sobhy, N., Abdelhamid, A., & Mahmoud, A. (2011). Inventory control for a joint replenishment problem with stochastic demand. world Academy of Science, Engineering and Technology, 5(1), 775-779.

Salameh, M. K., Yassine, A. A., Maddah, B., & Ghaddar, L. (2014). Joint replenishment model with substitution. Applied Mathematical Modelling, 38(14), 3662-3671. http://dx.doi.org/10.1016/j.apm.2013.12.008.

Sana, S. S., Chedid, J. A., & Navarro, K. S. (2014). A three-layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items. Applied Mathematics and Computation, 229, 139-150. http://dx.doi.org/10.1016/j.amc.2013.12.006.

Saracoglu, I., Topaloglu, S., & Keskinturk, T. (2014). A genetic algorithm approach for multi-product multi-period continuous review inventory models. Expert Systems with Applications, 41(18), 8189-8202. http://dx.doi.org/10.1016/j.eswa.2014.07.003.

Silver, E. A. (1976). A simple method of determining order quantities in joint replenishments under deterministic demand. Management Science, 22(12), 1351-1361. http://dx.doi.org/10.1287/mnsc.22.12.1351.

Silver, E. A. (1979). Coordinated replenishments of items under time‐varying demand: dynamic programming formulation. Naval Research Logistics Quarterly, 26(1), 141-151. http://dx.doi.org/10.1002/nav.3800260113.

Silver, E. A. (1981). Establishing reorder points in the (S, c, s) coordinated control system under compound Poisson demand. International Journal of Production Research, 19(6), 743-750. http://dx.doi.org/10.1080/00207548108956705.

Solyalđ, O., Süral, H., & Denizel, M. (2010). The one-warehouse multi-retailer problem with an order-up-to level inventory policy. Naval Research Logistics, 57(7), 653-666. http://dx.doi.org/10.1002/nav.20428.

Taleizadeh, A. A., Moghadasi, H., Niaki, S. T. A., & Eftekhari, A. (2008). An economic order quantity under joint replenishment policy to supply expensive imported raw materials with payment in advance. Journal of Applied Sciences, 23(8), 4263-4273. http://dx.doi.org/10.3923/jas.2008.4263.4273.

Taleizadeh, A. A., Niaki, S. T. A., & Nikousokhan, R. (2011). Constraint multiproduct joint-replenishment inventory control problem using uncertain programming. Applied Soft Computing, 11(8), 5143-5154. http://dx.doi.org/10.1016/j.asoc.2011.05.045.

Taleizadeh, A. A., Nikpour, S., & Zarei, M. (2009). Constraint joint-replenishment inventory control problem with fuzzy rough demand. Journal of Applied Sciences, 9(4), 627-638. http://dx.doi.org/10.3923/jas.2009.627.638.

Taleizadeh, A. A., Wee, H.-M., & Jolai, F. (2013). Revisiting a Fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment. Mathematical and Computer Modelling, 57(5-6), 1466-1479. http://dx.doi.org/10.1016/j.mcm.2012.12.008.

Thomé, A. M. T., Scavarda, L. F., & Scavarda, A. J. (2016). Conducting systematic literature review in operations management. Production Planning and Control, 27(5), 408-420. http://dx.doi.org/10.1080/09537287.2015.1129464.

Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for developing evidence-informed management knowledge by means of systematic review. British Journal of Management, 14(3), 207-222. http://dx.doi.org/10.1111/1467-8551.00375.

Tsai, C.-Y., Tsai, C.-Y., & Huang, P.-W. (2009). An association clustering algorithm for can-order policies in the joint replenishment problem. International Journal of Production Economics, 117(1), 30-41. http://dx.doi.org/10.1016/j.ijpe.2008.08.056.

Tsao, Y.-C. (2010). Managing multi-echelon multi-item channels with trade allowances under credit period. International Journal of Production Economics, 127(2), 226-237. http://dx.doi.org/10.1016/j.ijpe.2009.08.010.

Tsao, Y.-C., & Sheen, G.-J. (2012). A multi-item supply chain with credit periods and weight freight cost discounts. International Journal of Production Economics, 135(1), 106-115. http://dx.doi.org/10.1016/j.ijpe.2010.11.013.

Tsao, Y.-C., & Teng, W.-G. (2013). Heuristics for the joint multi-item replenishment problem under trade credits. IMA Journal of Management Mathematics, 24(1), 63-77. http://dx.doi.org/10.1093/imaman/dps004.

van Eijs, M. J. G. (1993). A note on the joint replenishment problem under constant demand. The Journal of the Operational Research Society, 44(2), 185-191. http://dx.doi.org/10.1057/jors.1993.31.

Verma, N. K., Chakraborty, A., & Chatterjee, A. K. (2014). Joint replenishment of multi retailer with variable replenishment cycle under VMI. European Journal of Operational Research, 233(3), 787-789. http://dx.doi.org/10.1016/j.ejor.2013.10.001.

Viswanathan, S. (1996). A new optimal algorithm for the joint replenishment problem. The Journal of the Operational Research Society, 47(7), 936-944. http://dx.doi.org/10.1057/jors.1996.119.

Viswanathan, S. (2002). On optimal algorithms for the joint replenishment problem. The Journal of the Operational Research Society, 53(11), 1286-1290. http://dx.doi.org/10.1057/palgrave.jors.2601445.

Wang, L., Dun, C.-X., Bi, W.-J., & Zeng, Y.-R. (2012a). An effective and efficient differential evolution algorithm for the integrated stochastic joint replenishment and delivery model. Knowledge-Based Systems, 36, 104-114. http://dx.doi.org/10.1016/j.knosys.2012.06.007.

Wang, L., He, J., & Zeng, Y.-R. (2012b). A differential evolution algorithm for joint replenishment problem using direct grouping and its application. Expert Systems: International Journal of Knowledge Engineering and Neural Networks, 29(5), 429-441. http://dx.doi.org/10.1111/j.1468-0394.2011.00594.x.

Wang, L., He, J., Wu, D., & Zeng, Y.-R. (2012c). A novel differential evolution algorithm for joint replenishment problem under interdependence and its application. International Journal of Production Economics, 135(1), 190-198. http://dx.doi.org/10.1016/j.ijpe.2011.06.015.

Wang, L., Fu, Q.-L., Lee, C.-G., & Zeng, Y.-R. (2013a). Model and algorithm of Fuzzy joint replenishment problem under credibility measure on Fuzzy goal. Knowledge-Based Systems, 39, 57-66. http://dx.doi.org/10.1016/j.knosys.2012.10.002.

Wang, L., Qu, H., Chen, T., & Yan, F.-P. (2013b). An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain. TheScientificWorldJournal, 2013, 1-11. PMid:24453822.

Wang, L., Qu, H., Li, Y., & He, J. (2013c). Modeling and optimization of stochastic joint replenishment and delivery scheduling problem with uncertain costs. Discrete Dynamics in Nature and Society, 2013, 1-12. http://dx.doi.org/10.1155/2013/657465.

Wang, L., Qu, H., Liu, S., & Chen, C. (2014). Optimizing the joint replenishment and channel coordination problem under supply chain environment using a simple and effective differential evolution algorithm. Discrete Dynamics in Nature and Society, 2014, 1-12. http://dx.doi.org/10.1155/2014/675721.

Wang, L., Shi, Y., & Liu, S. (2015). An improved fruit fly optimization algorithm and its application to joint replenishment problems. Expert Systems with Applications, 42(9), 4310-4323. http://dx.doi.org/10.1016/j.eswa.2015.01.048.

Wang, Y.-C., & Cheng, W.-T. (2008). A sensitivity analysis of solving joint replenishment problems using the RAND method under inaccurate holding cost estimates and demand forecasts. Computers & Industrial Engineering, 55(1), 243-252. http://dx.doi.org/10.1016/j.cie.2007.12.010.

Wee, H.-M., Lo, C.-C., & Hsu, P.-H. (2009). A multi-objective joint replenishment inventory model of deteriorated items in a Fuzzy environment. European Journal of Operational Research, 197(2), 620-631. http://dx.doi.org/10.1016/j.ejor.2006.08.067.

Wildeman, R. E., Frenk, J. B. G., & Dekker, R. (1997). An efficient optimal solution method for the joint replenishment problem. European Journal of Operational Research, 99(2), 433-444. http://dx.doi.org/10.1016/S0377-2217(96)00072-0.

Yang, W., Chan, F. T., & Kumar, V. (2012). Optimizing replenishment polices using genetic algorithm for single-warehouse multi-retailer system. Expert Systems with Applications, 39(3), 3081-3086. http://dx.doi.org/10.1016/j.eswa.2011.08.171.

Yao, M.-J. (2010). A search algorithm for solving the joint replenishment problem in a distribution center with warehouse-space restrictions. International Journal of Operations Research, 7(2), 45-60.

Yi, G., & Reklaitis, G. V. (2014). Adaptive model predictive inventory controller for multiproduct warehouse system. Automatica, 50(9), 2245-2253. http://dx.doi.org/10.1016/j.automatica.2014.07.022.

Yoo, M., & Gen, M. (2007). Joint replenishment problem with multisupplier using hybrid genetic algorithm. Journal of Japan Industrial Management Association, 57(1), 497-502.

Yousefi, O., & Sadjadi, S. J. (2014). Solving a new bi-objective joint replenishment inventory model with modified RAND and genetic algorithms. Turkish Journal of Electrical Engineering & Computer Sciences, 22, 1338-1353. http://dx.doi.org/10.3906/elk-1205-22.

Zeng, Y.-R., Wang, L., Xu, X.-H., & Fu, Q.-L. (2014). Optimizing the joint replenishment and delivery scheduling problem under fuzzy environment using inverse weight fuzzy nonlinear programming method. Abstract and Applied Analysis, 2014, 1-13. http://dx.doi.org/10.1155/2014/904240.

Zhang, J. (2009). Cost allocation for joint replenishment models. Operations Research, 57(1), 146-156. http://dx.doi.org/10.1287/opre.1070.0491.

Zhang, R. (2012). An extension of partial backordering EOQ with correlated demand caused by cross-selling considering multiple minor items. European Journal of Operational Research, 220(3), 876-881. http://dx.doi.org/10.1016/j.ejor.2012.02.015.

Zhang, R., Kaku, I., & Xiao, Y. (2011). Deterministic EOQ with partial backordering and correlated demand caused by cross-selling. European Journal of Operational Research, 210(3), 537-551. http://dx.doi.org/10.1016/j.ejor.2010.10.001.

Zhang, R., Kaku, I., & Xiao, Y. (2012). Model and heuristic algorithm of the joint replenishment problem with complete backordering and correlated demand. International Journal of Production Economics, 139(1), 33-41. http://dx.doi.org/10.1016/j.ijpe.2011.01.019.

Zhang, T., Huang, G. Q., Qu, T., & Li, Z. (2013). Headquarter-centered common sourcing management through order coordination and consolidation. Computers & Operations Research, 40(8), 2011-2025. http://dx.doi.org/10.1016/j.cor.2013.02.021.

Zhou, W. Q., Chen, L., & Ge, H. M. (2013). A multi-product multi-echelon inventory control model with joint replenishment strategy. Applied Mathematical Modelling, 37(4), 2039-2050. http://dx.doi.org/10.1016/j.apm.2012.04.054.
 

58ff8c000e8825966dabdcf5 production Articles
Links & Downloads

Production

Share this page
Page Sections