Production
https://prod.org.br/article/doi/10.1590/0103-6513.20250032
Production
Systematic Review

Theory of Constraints and Industry 4.0: mutual contributions and research perspectives

João Victor Rojas Luiz; Fernando Bernardi de Souza; Octaviano Rojas Luiz

Downloads: 0
Views: 28

Abstract

Paper aims: This paper explores the integration of Industry 4.0 digital technologies and the Theory of Constraints (TOC) in manufacturing systems, focusing on their reciprocal enhancement to drive operational improvements.

Originality: It pioneers an examination of how TOC’s principles can effectively guide the adoption of I4.0 innovations while also showing how emerging technologies can extend the practical applications of TOC in operations management.

Research method: A systematic literature review was conducted following the PRISMA protocol, ensuring a comprehensive synthesis of existing studies at the intersection of TOC and I4.0.

Main findings: The review identifies three key elements: (i) the critical role of systems analysis in understanding manufacturing constraints, (ii) the effective implementation of I4.0 strategies guided by TOC principles, and (iii) the support provided by advanced technologies—such as artificial intelligence, digital twins, and RFID—in enhancing TOC applications.

Implications for theory and practice: The study offers a robust theoretical framework that bridges traditional operations management with modern digital strategies. Practically, it provides actionable insights for managers seeking to optimize technology adoption and operational efficiency in manufacturing, ultimately paving the way for future research on integrated digital and constraint-based management systems.

Keywords

Industry 4.0, Theory of Constraints, Production planning and control, Digital technologies, Systematic review

References

Aburumman, M. O., Sweis, R., & Sweis, G. J. (2024). Investigating building information modelling (BIM) and lean construction: the potential BIM-lean interactions synergy and integration in the Jordanian construction industry. International Journal of Lean Six Sigma, 15(2), 400-438. http://doi.org/10.1108/IJLSS-01-2023-0013.

Aceto, G., Persico, V., & Pescape, A. (2019). A survey on information and communication technologies for Industry 4.0: state-of-the-art, taxonomies, perspectives, and challenges. IEEE Communications Surveys and Tutorials, 21(4), 3467-3501. http://doi.org/10.1109/COMST.2019.2938259.

Acikgoz, F., Stylos, N., & Lythreatis, S. (2024). Identifying capabilities and constraints in utilizing blockchain technology in hospitality and tourism. International Journal of Contemporary Hospitality Management, 36(10), 3493-3514. http://doi.org/10.1108/IJCHM-07-2023-1083.

Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: a literature review on technologies for manufacturing systems. Engineering Science and Technology, an International Journal, 22(3), 899-919. http://doi.org/10.1016/j.jestch.2019.01.006.

Aljaž, T. (2024a). Enhancing retail operations: integrating artificial intelligence into the Theory of Constraints thinking process to solve shelf issue. Elektrotehniški Vestnik, 91, 53-58.

Aljaž, T. (2024b). Leveraging ChatGPT for enhanced logical analysis in the Theory of Constraints thinking process. Organizacija, 57(2), 202-214. http://doi.org/10.2478/orga-2024-0014.

Antony, J., McDermott, O., Powell, D., & Sony, M. (2023). The evolution and future of lean Six Sigma 4.0. The TQM Journal, 35(4), 1030-1047. http://doi.org/10.1108/TQM-04-2022-0135.

Bacelar-Silva, G. M., Cox, J. F., Baptista, H. R., & Rodrigues, P. P. (2021). Identifying and addressing the underlying core problems in healthcare environments: an illustration using an emergency department game. International Journal of Environmental Research and Public Health, 18(19), 10083. http://doi.org/10.3390/ijerph181910083. PMid:34639391.

Balaji, V., Venkumar, P., & Sabitha, M. S. (2018). Smart manufacturing through TOC based Efficiency Monitoring System (TBEMS). International Journal of Engineering & Technology, 7(4.10), 118. http://doi.org/10.14419/ijet.v7i4.10.20820.

Banerjee, D., & Lowalekar, H. (2021). Communicating for change: a systems thinking approach. Journal of Organizational Change Management, 34(5), 1018-1035. http://doi.org/10.1108/JOCM-10-2020-0325.

Chang, K. H., Chang, Y. C., & Chang, Y. S. (2017). Applying theory of constraints-based approach to solve memory allocation of cloud storage. International Journal of Systems Science: Operations and Logistics, 4(4), 311-329. http://doi.org/10.1080/23302674.2015.1106027.

Choi, T., Kumar, S., Yue, X., & Chan, H. (2022). Disruptive technologies and operations management in the Industry 4.0 era and beyond. Production and Operations Management, 31(1), 9-31. http://doi.org/10.1111/poms.13622.

Chou, H.-H., Wang, C.-T., & Sheu, R.-S. (2016). A practical multiple-tool-set approach for increasing agile response in overhaul production with limited resource requirement visibility. International Journal of Industrial Engineering: Theory, Applications and Practice, 23(2), 119-136.

Colombari, R., Neirotti, P., & Berbegal-Mirabent, J. (2024). Disentangling the socio-technical impacts of digitalization: what changes for shop-floor decision-makers? International Journal of Production Economics, 276, 109377. http://doi.org/10.1016/j.ijpe.2024.109377.

Coman, A., & Ronen, B. (1995). Information technology in operations management: a theory-of-constraints approach. International Journal of Production Research, 33(5), 1403-1415. http://doi.org/10.1080/00207549508930217.

Costa, D., Martins, M., Martins, S., Teixeira, E., Bastos, A., & Cunha, A. R. (2019). Analysis of production activity control mechanisms for Industry 4.0. International Journal of Mechatronics and Applied Mechanics, 5, 194-205.

Costas, J., Puche, J., Ponte, B., & Gupta, M. C. (2023). An agent-based simulator for quantifying the cost of uncertainty in production systems. Simulation Modelling Practice and Theory, 123, 102660. http://doi.org/10.1016/j.simpat.2022.102660.

Cox III, J. F. (2019). Using the theory of constraints’ processes of ongoing improvement to address the provider appointment scheduling system execution problem. Health Systems, 10(1), 41-72. http://doi.org/10.1080/20476965.2019.1646105. PMid:33758657.

Eidelwein, F., Piran, F. A. S., Lacerda, D. P., Dresch, A., & Rodrigues, L. H. (2018). Exploratory analysis of modularization strategy based on the Theory of Constraints thinking process. Global Journal of Flexible Systems Management, 19(2), 111-122. http://doi.org/10.1007/s40171-017-0177-1.

Ermel, A. P. C., Lacerda, D. P., Morandi, M. I. W. M., & Gauss, L. (2021). Literature Reviews: Modern Methods for Investigating Scientific and Technological Knowledge. Cham: Springer International Publishing. http://doi.org/10.1007/978-3-030-75722-9.

Esteso, A., Peidro, D., Mula, J., & Díaz-Madroñero, M. (2023). Reinforcement learning applied to production planning and control. International Journal of Production Research, 61(16), 5772-5789. http://doi.org/10.1080/00207543.2022.2104180.

Franco, D., Miller Devós Ganga, G., Santa-Eulalia, L. A., & Godinho Filho, M. (2020). Consolidated and inconclusive effects of additive manufacturing adoption: a systematic literature review. Computers & Industrial Engineering, 148, 106713. http://doi.org/10.1016/j.cie.2020.106713.

Gichane, M. M., Byiringiro, J. B., Benoussaad, M., & Rakotondrabe, M. (2025). Human-centric framework for robotic assembly for industry of the future. International Journal of Precision Engineering and Manufacturing, 26(5), 1167-1185. http://doi.org/10.1007/s12541-024-01176-4.

Goldratt, E. M., & Cox, J. (1990). The goal. Great Barrington, MA: North River Press.

Goldratt, E. M., Schragenheim, E., & Ptak, C. A. (2000). Necessary, but not sufficient. Great Barrington, MA: North River Press.

Golmohammadi, D. (2015). A study of scheduling under the theory of constraints. International Journal of Production Economics, 165, 38-50. http://doi.org/10.1016/j.ijpe.2015.03.015.

Gomes, R. F. S., Gauss, L., & Lacerda, D. P. (2021). Fast-response measures to mitigate the COVID-19 health and economic impacts within the organizations: the case of Thyssenkrupp Elevator Brazil. Production, 31, e20200062. http://doi.org/10.1590/0103-6513.20200062.

Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic roadmap toward Industry 4.0. Journal of Manufacturing Technology Management, 29(6), 910–936. https://doi.org/10.1108/JMTM-02-2018-0057.

Groop, J., Reijonsaari, K., & Lillrank, P. (2010). Applying the theory of constraints to health technology assessment. International Journal on Advances in Life Sciences, 2(3-4), 115-124.

Gupta, M., Gupta, A., de Souza, F. B., Ikeziri, L. M., & Datt, M. (2024). Synergizing ChatGPT and experiential learning: unravelling TOC based production planning and control variants through the dice game. International Journal of Production Research, 63(4), 1209-1234. http://doi.org/10.1080/00207543.2024.2372654.

Hagan, M. C., Andoh-Baidoo, F. K., Ayaburi, E. W., & Nwankpa, J. K. (2024). A moderated model of open innovation: an integration of Theories of Constraint and dynamic capabilities. IEEE Transactions on Engineering Management, 71, 14438-14449. http://doi.org/10.1109/TEM.2024.3440070.

Helfer, D. G., Alff, L. A., Tedesco, L. P. C., Kipper, L. M., & Forno, A. J. D. (2024). Value stream mapping and theory of constraints in a screw company: generating ways for the implementation of Industry 4.0. International Journal of Productivity and Quality Management, 43(1), 46-60. http://doi.org/10.1504/IJPQM.2024.141495.

Hilmola, O. P., & Gupta, M. (2015). Throughput accounting and performance of a manufacturing company under stochastic demand and scrap rates. Expert Systems with Applications, 42(22), 8423-8431. http://doi.org/10.1016/j.eswa.2015.06.056.

Hilmola, O.-P., & Li, W. (2016). Throughput accounting heuristics is still adequate: response to criticism. Expert Systems with Applications, 58, 221-228. http://doi.org/10.1016/j.eswa.2016.03.051.

Ikeziri, L. M., de Souza, F. B., Gupta, M. C., & de Camargo Fiorini, P. (2018). Theory of constraints: review and bibliometric analysis. International Journal of Production Research, 57(15-16), 5068-5102. http://doi.org/10.1080/00207543.2018.1518602.

Jahani, H., Jain, R., & Ivanov, D. (2023). Data science and big data analytics: a systematic review of methodologies used in the supply chain and logistics research. Annals of Operations Research. http://doi.org/10.1007/s10479-023-05390-7.

Jauhar, S. K., Priyadarshini, S., Pratap, S., & Paul, S. K. (2023). A literature review on applications of Industry 4.0 in Project Management. Operations Management Research: Advancing Practice Through Research, 16(4), 1858-1885. http://doi.org/10.1007/s12063-023-00403-x.

Kagermann, H. (2015). Change through digitization: value creation in the age of Industry 4.0. In H. Albach, H. Meffert, A. Pinkwart & R. Reichwald (Eds.), Management of permanent change (pp. 23-45). Wiesbaden: Springer Gabler. http://doi.org/10.1007/978-3-658-05014-6_2.

Kandarkar, P. C., & Ravi, V. (2024). Investigating the impact of smart manufacturing and interconnected emerging technologies in building smarter supply chains. Journal of Manufacturing Technology Management, 35(5), 984-1009. http://doi.org/10.1108/JMTM-11-2023-0498.

Khajavi, S. H., Partanen, J., & Holmström, J. (2014). Additive manufacturing in the spare parts supply chain. Computers in Industry, 65(1), 50-63. http://doi.org/10.1016/j.compind.2013.07.008.

Khakifirooz, M., Fathi, M., & Dolgui, A. (2024). Theory of AI-driven scheduling (TAIS): a service-oriented scheduling framework by integrating theory of constraints and AI. International Journal of Production Research. In press. http://doi.org/10.1080/00207543.2024.2424976.

Klingenberg, C. O., Borges, M. A. V., & Antunes Júnior, J. A. V. (2018). Industry 4.0: What makes it a revolution? A historical framework to understand the phenomenon. Technology in Society, 70, 102009. http://doi.org/10.1016/j.techsoc.2022.102009.

Kumar, T., Braeken, A., Jurcut, A. D., Liyanage, M., & Ylianttila, M. (2020). AGE: authentication in gadget-free healthcare environments. Information Technology and Management, 21(2), 95-114. http://doi.org/10.1007/s10799-019-00306-z.

Kumar, N., Singh, A., Gupta, S., Kaswan, M. S., & Singh, M. (2024). Integration of Lean manufacturing and Industry 4.0: a bibliometric analysis. The TQM Journal, 36(1), 244-264. http://doi.org/10.1108/TQM-07-2022-0243.

Kuo, T.-C., Hsu, N.-Y., Li, T. Y., & Chao, C.-J. (2021). Industry 4.0 enabling manufacturing competitiveness: delivery performance improvement based on theory of constraints. Journal of Manufacturing Systems, 60, 152-161. http://doi.org/10.1016/j.jmsy.2021.05.009.

Lee, J. H., Chang, J. G., Tsai, C. H., & Li, R. K. (2010). Research on enhancement of TOC Simplified Drum-Buffer-Rope system using novel generic procedures. Expert Systems with Applications, 37(5), 3747-3754. http://doi.org/10.1016/j.eswa.2009.11.049.

Li, C., Zhang, J., & Luo, Y. (2017). Real-time scheduling based on optimized topology and communication traffic in distributed real-time computation platform of storm. Journal of Network and Computer Applications, 87, 100-115. http://doi.org/10.1016/j.jnca.2017.03.007.

Li, H., Cao, Y., Lin, Q., & Zhu, H. (2022). Data-driven project buffer sizing in critical chains. Automation in Construction, 135, 104134. http://doi.org/10.1016/j.autcon.2022.104134.

Luiz, O. R., Souza, F. B., Luiz, J. V. R., & Jugend, D. (2019). Linking the critical chain project management literature. International Journal of Managing Projects in Business, 12(2), 423-443. http://doi.org/10.1108/IJMPB-03-2018-0061.

Luo, D., Thevenin, S., & Dolgui, A. (2023). A state-of-the-art on production planning in Industry 4.0. International Journal of Production Research, 61(19), 6602-6632. http://doi.org/10.1080/00207543.2022.2122622.

Mabin, V. J., & Cavana, R. Y. (2024). A framework for using Theory of Constraints thinking processes and tools to complement qualitative system dynamics modelling. System Dynamics Review, 40(4), 1-47. http://doi.org/10.1002/sdr.1768.

Malik, P. K., Sharma, R., Singh, R., Gehlot, A., Satapathy, S. C., Alnumay, W. S., Pelusi, D., Ghosh, U., & Nayak, J. (2021). Industrial Internet of Things and its applications in Industry 4.0: state of the art. Computer Communications, 166, 125-139. http://doi.org/10.1016/j.comcom.2020.11.016.

Mantravadi, S., Srai, J. S., & Møller, C. (2023). Application of MES/MOM for Industry 4.0 supply chains: a cross-case analysis. Computers in Industry, 148, 103907. http://doi.org/10.1016/j.compind.2023.103907.

Mateen, A., & More, D. (2013). Applying TOC thinking process tools in managing challenges of supply chain finance: a case study. International Journal of Services and Operations Management, 15(4), 389-410. http://doi.org/10.1504/IJSOM.2013.054882.

Mayo-Alvarez, L., Del-Aguila-Arcentales, S., Alvarez-Risco, A., Chandra Sekar, M., Davies, N. M., & Yáñez, J. A. (2024). Innovation by integration of Drum-Buffer-Rope (DBR) method with Scrum-Kanban and use of Monte Carlo simulation for maximizing throughput in agile project management. Journal of Open Innovation, 10(1), 100228. http://doi.org/10.1016/j.joitmc.2024.100228.

Mirzaei, M., & Mabin, V. J. (2018). A review of the scholarly literature on CCPM: a focus on underpinning assumptions. International Journal of Project Organisation and Management, 10(3), 242. http://doi.org/10.1504/IJPOM.2018.093986.

Modi, K., Lowalekar, H., & Bhatta, N. M. K. (2019). Revolutionizing supply chain management the theory of constraints way: a case study. International Journal of Production Research, 57(11), 3335-3361. http://doi.org/10.1080/00207543.2018.1523579.

Myrelid, A., & Olhager, J. (2019). Hybrid manufacturing accounting in mixed process environments: a methodology and a case study. International Journal of Production Economics, 210, 137-144. http://doi.org/10.1016/j.ijpe.2019.01.024.

Naghshineh, B. (2024). Additive manufacturing technology adoption for supply chain agility: a systematic search and review. International Journal of Production Research. In press. http://doi.org/10.1080/00207543.2024.2356629.

Naor, M., Bernardes, E. S., & Coman, A. (2013). Theory of constraints: Is it a theory and a good one? International Journal of Production Research, 51(2), 542-554. http://doi.org/10.1080/00207543.2011.654137.

Noh, S. M., Kim, J. H., & Jang, S. Y. (2017). A schedule of cleaning processes for a single-armed cluster tool. International Journal of Industrial Engineering: Theory Applications and Practice, 24(2), 232-244.

Oesterreich, T. D., & Teuteberg, F. (2016). Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Computers in Industry, 83, 121-139. http://doi.org/10.1016/j.compind.2016.09.006.

Oraee, M., Hosseini, M. R., & Edwards, D. J. (2025). Quantitative insights into collaboration in BIM-enabled projects: a PLS-SEM approach. Engineering, Construction, and Architectural Management. http://doi.org/10.1108/ECAM-09-2023-0891.

Osterrieder, P., Budde, L., & Friedli, T. (2020). The smart factory as a key construct of industry 4.0: a systematic literature review. International Journal of Production Economics, 221, 107476. http://doi.org/10.1016/j.ijpe.2019.08.011.

Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing, 31(1), 127-182. http://doi.org/10.1007/s10845-018-1433-8.

Pacheco, D. A. J., Pergher, I., Antunes Junior, J. A. V., & Roehe Vaccaro, G. L. (2019). Exploring the integration between lean and the theory of constraints in operations management. International Journal of Lean Six Sigma, 10(3), 718-742. http://doi.org/10.1108/IJLSS-08-2017-0095.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. http://doi.org/10.1136/bmj.n71. PMid:33782057.

Paul, J., Khatri, P., & Kaur Duggal, H. (2023). Frameworks for developing impactful systematic literature reviews and theory building: what, why and how? Journal of Decision Systems, 33(4), 537-550. http://doi.org/10.1080/12460125.2023.2197700.

Peralta-Abarca, J. D. C., Moreno-Bernal, P., Nesmachnow, S., & León-Hernández, V. A. (2024). Lean office approach for continuous improvement identification in the admission process of university students. SN Computer Science, 5(6), 685. http://doi.org/10.1007/s42979-024-03041-7.

Prashar, A. (2023). Production planning and control in industry 4.0 environment: a morphological analysis of literature and research agenda. Journal of Intelligent Manufacturing, 34(6), 2513-2528. http://doi.org/10.1007/s10845-022-01958-5.

Rays Filho, I., Souza, F. B., & Ikeziri, L. M. (2023). Analysis of a support method for offering delivery promises in environments managed by S-DBR system. Production, 33, e20230023. http://doi.org/10.1590/0103-6513.20230023.

Rodgers, M., Mukherjee, S., Melamed, B., Baveja, A., & Kapoor, A. (2024). Solving business problems: The business-driven data-supported process. Annals of Operations Research, 332(1-3), 705-741. http://doi.org/10.1007/s10479-023-05770-z.

Rohit, Vinodh, S., & Vigneshvaran, R. (2025). Benchmarking analysis of cyber-physical system-based lean tools using grey approaches. Benchmarking: An International Journal. https://doi.org/10.1108/BIJ-11-2023-0808.

Rota, I. S., & Souza, F. B. (2021). A proposal for a theory of constraints-based framework in sales and operations planning. Journal of Applied Research and Technology, 19(2), 117-139. http://doi.org/10.22201/icat.24486736e.2021.19.2.1580.

Rüttimann, B. G., & Stöckli, M. T. (2020). From Batch & Queue to Industry 4.0-type manufacturing systems: a taxonomy of alternative production models. Journal of Service Science and Management, 13(02), 299-316. http://doi.org/10.4236/jssm.2020.132019.

Saif, U., Guan, Z., Wang, C., He, C., Yue, L., & Mirza, J. (2019). Drum buffer rope-based heuristic for multi-level rolling horizon planning in mixed model production. International Journal of Production Research, 57(14), 1-28. http://doi.org/10.1080/00207543.2019.1569272.

Santos, A. A., Goecks, L. S., Pereira, L. M., Couto, B. S., & Korzenowski, A. L. (2024). Industry 4.0 technologies and Lean Office: perspectives to Smart Office. Production, 34, 1. http://doi.org/10.1590/0103-6513.20220060.

Schragenheim, E., Camp, H., & Surace, R. (2019). Throughput economics. Milton: Productivity Press. http://doi.org/10.4324/9780429020124

Sestino, A., Prete, M. I., Piper, L., & Guido, G. (2020). Internet of Things and Big Data as enablers for business digitalization strategies. Technovation, 98, 102173. http://doi.org/10.1016/j.technovation.2020.102173.

Seuring, S., & Gold, S. (2012). Conducting content-analysis based literature reviews in supply chain management. Supply Chain Management, 17(5), 544-555. http://doi.org/10.1108/13598541211258609.

Sharma, A., & Singh, B. J. (2020). Evolution of industrial revolutions: a review. International Journal of Innovative Technology and Exploring Engineering, 9(11), 66-73. http://doi.org/10.35940/ijitee.I7144.0991120.

Shashi, M. (2023). Sustainable digitalization in pharmaceutical supply chains using theory of constraints: a qualitative study. Sustainability, 15(11), 8752. http://doi.org/10.3390/su15118752.

Silva Stefano, G., Pacheco Lacerda, D., Isabel Wolf Motta Morandi, M., Augusto Cassel, R., & Denicol, J. (2024). How important is the Theory of Constraints to supply chain management? An assessment of its application and impacts. Computers & Industrial Engineering, 198, 110717. http://doi.org/10.1016/j.cie.2024.110717.

Souza, F. B. (2005). Do OPT à Teoria das Restrições: avanços e mitos. Production, 15(2), 184-197. http://doi.org/10.1590/S0103-65132005000200005.

Stump, B., & Badurdeen, F. (2012). Integrating lean and other strategies for mass customization manufacturing: a case study. Journal of Intelligent Manufacturing, 23(1), 109-124. http://doi.org/10.1007/s10845-009-0289-3.

Tao, F., Qi, Q., Wang, L., & Nee, A. Y. C. (2019). Digital twins and cyber-physical systems toward smart manufacturing and Industry 4.0: correlation and comparison. Engineering, 5(4), 653-661. http://doi.org/10.1016/j.eng.2019.01.014.

Tsai, W.-H. (2018). Green production planning and control for the textile industry by using mathematical programming and Industry 4.0 techniques. Energies, 11(8), 2072. http://doi.org/10.3390/en11082072.

Tsai, W. H., & Lai, S. Y. (2018). Green production planning and control model with ABC under industry 4.0 for the paper industry. Sustainability, 10(8), 2932. http://doi.org/10.3390/su10082932.

Tsai, W.-H., & Lu, Y.-H. (2018). A framework of production planning and control with carbon tax under Industry 4.0. Sustainability, 10(9), 3221. http://doi.org/10.3390/su10093221.

Tsai, W.-H. (2023). Balancing profit and environmental sustainability with carbon emissions management and Industry 4.0 technologies. Energies, 16(17), 6175. http://doi.org/10.3390/en16176175.

Tsai, W.-H., & Su, P. (2024). A dynamic approach to sustainable knitted footwear production in Industry 4.0: integrating short-term profitability and long-term carbon efficiency. Sustainability, 16(16), 7120. http://doi.org/10.3390/su16167120.

Tsai, W.-H., Chang, S.-C., & Li, X.-Y. (2024a). Advancing decarbonization efforts in the glass manufacturing industry through mathematical optimization and management accounting. Processes, 12(6), 1078. http://doi.org/10.3390/pr12061078.

Tsai, W.-H., Chen, H.-C., Chang, S.-C., & Chan, K.-C. (2024b). Revolutionizing textile manufacturing: sustainable and profitable production by integrating Industry 4.0, activity-based costing, and the theory of constraints. Processes, 12(11), 2311. http://doi.org/10.3390/pr12112311.

Tsou, C.-M. (2013). On the strategy of supply chain collaboration based on dynamic inventory target level management: a theory of constraint perspective. Applied Mathematical Modelling, 37(7), 5204-5214. http://doi.org/10.1016/j.apm.2012.10.031.

Urban, W., & Rogowska, P. (2019). Systematic literature review of Theory of Constraints. In B. Gapiński, M. Szostak & V. Ivanov (Eds.), Advances in manufacturing II (Vol. 2, pp. 129-138). Cham: Springer. http://doi.org/10.1007/978-3-030-18789-7_12

Wankhede, V. A., Vinodh, S., & Antony, J. (2025). Empirical analysis of key operational characteristics of lean six sigma and Industry 4.0 integration. The TQM Journal, 37(2), 611-634. http://doi.org/10.1108/TQM-01-2023-0033.

Watson, K. J., Blackstone, J. H., & Gardiner, S. C. (2007). The evolution of a management philosophy: The theory of constraints. Journal of Operations Management, 25(2), 387-402. https://doi.org/10.1016/j.jom.2006.04.004.

Yin, J., Ma, R., & Ge, S. (2025). Predicting task bottlenecks in digital manufacturing enterprises based on spatio-temporal graph convolutional networks. Frontiers of Engineering Management. In press. http://doi.org/10.1007/s42524-025-4030-5.
 


Submitted date:
03/28/2025

Accepted date:
08/18/2025

6902470ba95395781b3f3985 production Articles
Links & Downloads

Production

Share this page
Page Sections