Production
https://prod.org.br/article/doi/10.1590/0103-6513.20240083
Production
Research Article

Assessment and prioritisation of innovation project driven by enterprise strategy using a Fuzzy-QFD approach

Matheus Henrique Kupka; Anderson Luis Szejka; Eduardo de Freitas Rocha Loures

Downloads: 0
Views: 44

Abstract

Paper aims: This paper aims to develop and validate a Maturity Analysis and Prioritization framework for Innovation Projects (MAPIP) using a Fuzzy-QFD approach to enhance decision-making and alignment with organizational strategies in the metal-mechanical industry.

Originality: The study introduces a novel application of the Fuzzy-QFD model, integrating 40 criteria across desirability, feasibility, viability, and maturity stages to create a tool for prioritizing innovation projects.

Research method: The MAPIP Fuzzy-QFD approach was applied to two innovation projects within a metal-mechanical company, each differing in novelty and complexity. The methodology involves assessing projects based on maturity stages while evaluating strategic alignment through fuzzy logic to handle qualitative and uncertain data.

Main findings: Results indicate that Project 01 achieved a higher maturity level than Project 02, suggesting that the model effectively identifies projects with higher strategic potential and readiness for market entry. This confirms the model’s robustness in evaluating and prioritizing projects with multiple characteristics.

Implications for theory and practice: This research expands the applicability of Fuzzy-QFD in innovation management, demonstrating its utility in project prioritization. Additionally, the MAPIP Fuzzy-QFD approach provides organizations with a tool for optimizing resource allocation and strategic alignment in project selection, supporting competitive advantage in complex industrial sectors.

Keywords

Innovation, Fuzzy-QFD, Maturity assessment, Metal-mechanical industry

References

Afsharkazemi, M., Khodabakhsh, M., & Motadel, M. (2012). Applying fuzzy analytic network process in quality function deployment model. Management Science Letters, 2(4), 1325-1340. http://doi.org/10.5267/j.msl.2012.02.006.

Arruda, H., & Silva, É. R. (2021). Assessment and evaluation in active learning implementations: introducing the engineering education active learning maturity model. Education Sciences, 11(11), 690. http://doi.org/10.3390/educsci11110690.

Bahrami, S., Atkin, B., & Landin, A. (2019). Innovation diffusion through standardization: A study of building ventilation products. Journal of Engineering and Technology Management, 54, 56-66. http://doi.org/10.1016/j.jengtecman.2019.11.001.

Carrillo, M. M., Maldonado, B., Ramos, V., Castillo, M. M., & Cedeño, L. (2024). Measurement of innovation capacity in small and medium manufacturing companies. In G. F. Olmedo Cifuentes, D. G. Arcos Avilés, & H. V. Lara Padilla (Eds.), Emerging research in intelligent systems (p. 85-99). Cham: Springer.. http://doi.org/10.1007/978-3-031-52258-1_7.

Casakin, H., & Wodehouse, A. (2021). A systematic review of design creativity in the architectural design studio. Buildings, 11(1), 31. http://doi.org/10.3390/buildings11010031.

Catto, S. L., & Maccari, E. A. (2021). Innovation projects management: a systematic literature review. Revista de Administração Da UFSM, 14(4), 848-863. http://doi.org/10.5902/1983465962712.

Chibás, F. O., Pantaleón, E. M., & Rocha, T. A. (2013). Gestão da inovação e da criatividade na atualidade. Holos, 3, 15-26. http://doi.org/10.15628/holos.2013.1082.

Ciric, D., Lalic, B., Gracanin, D., Palcic, I., & Zivlak, N. (2018). Agile project management in new product development and innovation processes: challenges and benefits beyond software domain. In 2018 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE) (pp. 1-9). New York: IEEE. http://doi.org/10.1109/TEMS-ISIE.2018.8478461.

Claire, J., Galvez, D., Boly, V., Camargo, M., & Moselle, J. C. (2014). A new innovation project maturity assessment methodology based on innovation degree. In 2014 International Conference on Engineering, Technology and Innovation (ICE) (pp. 1-8). New York: IEEE. http://doi.org/10.1109/ICE.2014.6871614.

Cooper, R. G. (2014). What’s next?: After stage-gate. Research Technology Management, 57(1), 20-31. http://doi.org/10.5437/08956308X5606963.

Dennehy, D., Kasraian, L., O’Raghallaigh, P., Conboy, K., Sammon, D., & Lynch, P. (2019). A Lean Start-up approach for developing minimum viable products in an established company. Journal of Decision Systems, 28(3), 224-232. http://doi.org/10.1080/12460125.2019.1642081.

Dursun, M., & Arslan, Ö. (2018). An integrated decision framework for material selection procedure: a case study in a detergent manufacturer. Symmetry, 10(11), 657. http://doi.org/10.3390/sym10110657.

Ghonim, M. A., Khashaba, N. M., Al-Najaar, H. M., & Khashan, M. A. (2022). Strategic alignment and its impact on decision effectiveness: A comprehensive model. International Journal of Emerging Markets, 17(1), 198-218. http://doi.org/10.1108/IJOEM-04-2020-0364.

Glogovac, M., Ruso, J., & Maricic, M. (2022). ISO 9004 maturity model for quality in industry 4.0. Total Quality Management & Business Excellence, 33(5–6), 529-547. http://doi.org/10.1080/14783363.2020.1865793.

Gruenhagen, J. H., Parker, R., & Cox, S. (2021). Technology diffusion and firm agency from a technological innovation systems perspective: a case study of fatigue monitoring in the mining industry. Journal of Engineering and Technology Management, 62, 101655. http://doi.org/10.1016/j.jengtecman.2021.101655.

Guédria, W., Naudet, Y., & Chen, D. (2011). Enterprise interoperability maturity: a model using fuzzy metrics. In E. Bayro-Corrochano & E. Hancock (Eds.), Progress in pattern recognition, image analysis, computer vision, and applications (vol. 8827, p. 69-80). Cham: Springer. http://doi.org/10.1007/978-3-642-22056-2_8.

Guédria, W., Naudet, Y., & Chen, D. (2015). Maturity model for enterprise interoperability. Enterprise Information Systems, 9(1), 1-28. http://doi.org/10.1080/17517575.2013.805246.

Hadjinicolaou, N., Kader, M., & Abdallah, I. (2021). Strategic innovation, foresight and the deployment of project portfolio management under mid-range planning conditions in medium-sized firms. Sustainability (Basel), 14(1), 80. http://doi.org/10.3390/su14010080.

Hunsaker, B. T., & Thomas, D. E. (2017). The viability triad: Desirability, feasibility, and sustainability as the new strategic decision imperative. J. Manag. Policies Pract, 5, 1-4.

Johansson, S., Kullström, M., Björk, J., Karlsson, A., & Nilsson, S. (2020). Digital production innovation projects – The applicability of managerial controls under high levels of complexity and uncertainty. Journal of Manufacturing Technology Management, 32(3), 772-794. http://doi.org/10.1108/JMTM-04-2019-0145.

Juan, Y.-K., Perng, Y.-H., Castro-Lacouture, D., & Lu, K.-S. (2009). Housing refurbishment contractors selection based on a hybrid fuzzy-QFD approach. Automation in Construction, 18(2), 139-144. http://doi.org/10.1016/j.autcon.2008.06.001.

Kankaanhuhta, V., Packalen, T., & Väätäinen, K. (2021). Digital transformation of forest services in finland: a case study for improving business processes. Forests, 12(6), 781. http://doi.org/10.3390/f12060781.

Keeney, R. L. (1992). Value-focused thinking: a path to creative decisionmaking. Cambridge: Harvard University Press.

Khani, S. A. A. A., Kheybari, S., Latifi, M.-A., Salimi, N., & Labib, A. (2023). Innovation and survival of traditional industries: measuring barriers using the best–worst method. International Journal of Information Technology & Decision Making, 1-29. http://doi.org/10.1142/S0219622023500153.

Kwak, K.-J., & Park, J.-M. (2021). A study on semantic-based autonomous computing technology for highly reliable smart factory in Industry 4.0. Applied Sciences (Basel, Switzerland), 11(21), 10121. http://doi.org/10.3390/app112110121.

Lee, G. H., & Park, S. H. (2021). Fuzzy QFD-based prioritization of work activities of constructin for safety. ICIC Express Letters. Part B, Applications, 12(1), 1-8. http://doi.org/10.24507/icicelb.12.01.1.

Legenvre, H., & Gualandris, J. (2018). Innovation sourcing excellence: three purchasing capabilities for success. Business Horizons, 61(1), 95-106. http://doi.org/10.1016/j.bushor.2017.09.009.

Lima-Junior, F. R., & Carpinetti, L. C. R. (2016). A multicriteria approach based on fuzzy QFD for choosing criteria for supplier selection. Computers & Industrial Engineering, 101, 269-285. http://doi.org/10.1016/j.cie.2016.09.014.

Liu, H.-T. (2011). Product design and selection using fuzzy QFD and fuzzy MCDM approaches. Applied Mathematical Modelling, 35(1), 482-496. http://doi.org/10.1016/j.apm.2010.07.014.

Liu, H.-T., & Wang, C.-H. (2010). An advanced quality function deployment model using fuzzy analytic network process. Applied Mathematical Modelling, 34(11), 3333-3351. http://doi.org/10.1016/j.apm.2010.02.024.

Lu, C.-F., Lin, L.-Z., & Yeh, H.-R. (2019). A multi-phased FQFD for the design of brand revitalisation. Total Quality Management & Business Excellence, 30(7–8), 848-871. http://doi.org/10.1080/14783363.2017.1343139.

Makate, C., Makate, M., Siziba, S., & Sadomba, Z. (2019). The impact of innovation on the performance of small-to-medium informal metal-trade enterprises in Zimbabwe. Cogent Business & Management, 6(1), 1625095. http://doi.org/10.1080/23311975.2019.1625095.

Maputi, E. S., & Arora, R. (2020). Gear concept selection procedure using fuzzy QFD, AHP and tacit knowledge. Cogent Engineering, 7(1), 1802816. http://doi.org/10.1080/23311916.2020.1802816.

Martinsuo, M. (2013). Project portfolio management in practice and in context. International Journal of Project Management, 31(6), 794-803. http://doi.org/10.1016/j.ijproman.2012.10.013.

Mello, V. G. (2020). Proposal of a Fuzzy-QFD model for selection of startups aiming at technology transfer and participation in acceleration programs (Master’s thesis). Universidade Tecnológica Federal do Paraná, Ponta Grossa.

Michnik, J. (2018). The WINGS method with multiple networks and its application to innovation projects selection. International Journal of Applied Management Science, 10(2), 105. http://doi.org/10.1504/IJAMS.2018.092077.

Min, C. S., Ahmad, R., Kamaruddin, S., & Azid, I. A. (2011). Development of autonomous maintenance implementation framework for semiconductor industries. International Journal of Industrial and Systems Engineering, 9(3), 268. http://doi.org/10.1504/IJISE.2011.043139.

Mottin De Andrade, J. M., De Freitas Rocha Loures, E., Szejka, A. L., Canciglieri, O., Klein, V., Francesconi, T., & Thonke, I. (2023). Multicriteria decision making approach for selection and prioritization of projects into the digital transformation journey. In C. M. Hussain & D. Rossit (Eds.), Designing smart manufacturing systems (p. 235-259). London: Elsevier.. http://doi.org/10.1016/B978-0-32-399208-4.00018-0.

OECD & Eurostat (2018). Oslo Manual 2018: Guidelines for Collecting, Reporting and Using Data on Innovation (4th ed.). Paris: OECD.

Ozgormus, E., Guner Goren, H., & Senocak, A. (2019). An integrated fuzzy QFD-MCDM framework for personnel selection problem. Scientia Iranica, 28(5), 2972-2986. http://doi.org/10.24200/sci.2019.52320.2657.

Pereira, L., Fernandes, A., Sempiterno, M., Dias, Á., Lopes da Costa, R., & António, N. (2021). Knowledge management maturity contributes to project-based companies in an open innovation era. Journal of Open Innovation, 7(2), 126. http://doi.org/10.3390/joitmc7020126.

Reda, H., & Dvivedi, A. (2022). Decision-making on the selection of lean tools using fuzzy QFD and FMEA approach in the manufacturing industry. Expert Systems with Applications, 192, 116416. http://doi.org/10.1016/j.eswa.2021.116416.

Rigoni, L. F. S., Cestari, J. M. A., & Rocha Loures, E. (2017). Interoperability assessment as indicator of innovation management effectiveness. International Journal of Engineering Research & Technology (Ahmedabad), 6(5), 171-176. http://doi.org/10.17577/IJERTV6IS050126.

Ruffatto, J., Severo, E. A., & Decesaro, L. (2015). O jeito é inovar: um estudo de caso em uma indústria metalmecânica sobre a contribuição da geraçao y no processo inovativo. Revista Gestão Inovação e Tecnologias, 5(4), 2540-2553. http://doi.org/10.7198/S2237-0722201500040005.

Saaty, T. L. (2005). Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks (3rd ed). Pittsburgh: RWS Publications.

Saihi, A., Madani, B., & Ndiaye, M. (2023). An innovation maturity assessment framework for universities with an integrated ANP approach. International Journal of Innovation Science, 16(6), 1028-1051. http://doi.org/10.1108/IJIS-03-2022-0040.

Saimoto, S., Singh, M. A., Langille, M. R., Levesque, J., Inal, K., Niewczas, M., & Woll, A. R. (2018). Method to decode stress-strain diagrams to identify the structure-strength relationships in aged aluminum alloys. Materials Science and Engineering A, 709, 9-16. http://doi.org/10.1016/j.msea.2017.10.004.

Samanlioglu, F., & Ayağ, Z. (2020). An intelligent approach for the evaluation of innovation projects. Journal of Intelligent & Fuzzy Systems, 38(1), 905-915. http://doi.org/10.3233/JIFS-179458.

Şener, S., & Hobikoğlu, E. H. (2013). Structural effect of enterprises open-closed innovation models tendencies in product output process: a study on the enterprises located in the IMES Industrial Estate – Turkey Example. Procedia: Social and Behavioral Sciences, 99, 986-996. http://doi.org/10.1016/j.sbspro.2013.10.572.

Singh, A., Gupta, A., & Mehra, A. (2021). Best criteria selection based PROMETHEE II method. OPSEARCH, 58(1), 160-180. http://doi.org/10.1007/s12597-020-00464-7.

Sjödin, D. R., Parida, V., Leksell, M., & Petrovic, A. (2018). Smart factory implementation and process innovation: a preliminary maturity model for leveraging digitalization in manufacturing. Research Technology Management, 61(5), 22-31. http://doi.org/10.1080/08956308.2018.1471277.

Snihur, Y., & Wiklund, J. (2019). Searching for innovation: product, process, and business model innovations and search behavior in established firms. Long Range Planning, 52(3), 305-325. http://doi.org/10.1016/j.lrp.2018.05.003.

Strašek, A., Pušavec, F., & Likar, B. (2020). Open innovation and business performance improvement in strategic business alliances. Management, 25(1), 133-144. http://doi.org/10.30924/mjcmi.25.1.8.

Suliman, A., & Rankin, J. (2021). Maturity-based mapping of technology and method innovation in off-site construction: Conceptual frameworks. Journal of Information Technology in Construction, 26, 381-408. http://doi.org/10.36680/j.itcon.2021.021.

Vimal, K. E. K., Vinodh, S., & Jayakrishna, K. (2019). Application of fuzzy QFD for improving the process sustainability characteristics: a case study. International Journal of Services and Operations Management, 32(2), 173-201. http://doi.org/10.1504/IJSOM.2019.097528.

Visscher, K., Hahn, K., & Konrad, K. (2021). Innovation ecosystem strategies of industrial firms: A multilayered approach to alignment and strategic positioning. Creativity and Innovation Management, 30(3), 619-631. http://doi.org/10.1111/caim.12429.

Wang, H., Fang, Z., Wang, D., & Liu, S. (2020). An integrated fuzzy QFD and grey decision-making approach for supply chain collaborative quality design of large complex products. Computers & Industrial Engineering, 140, 106212. http://doi.org/10.1016/j.cie.2019.106212.

Wodehouse, A., & Casakin, H. (2022). Design creativity in architecture and engineering. Building (London), 10(10), 1552. http://doi.org/10.3390/buildings12101552.

Wu, L., Sun, L., Chang, Q., Zhang, D., & Qi, P. (2022). How do digitalization capabilities enable open innovation in manufacturing enterprises? A multiple case study based on resource integration perspective. Technological Forecasting and Social Change, 184, 122019. http://doi.org/10.1016/j.techfore.2022.122019.

Zheng, J., Gu, Y., Xie, H., & Wu, G. (2023). Linking innovation, empowerment to facilitate project performance: A mediated moderation model. Journal of Engineering and Technology Management, 68, 101750. http://doi.org/10.1016/j.jengtecman.2023.101750.
 


Submitted date:
08/01/2024

Accepted date:
11/08/2024

677d558fa9539507975d3a43 production Articles
Links & Downloads

Production

Share this page
Page Sections