Production
https://prod.org.br/article/doi/10.1590/0103-6513.20240068
Production
Thematic Section - Digital Transformation of Supply Chain Management

Efficiency determinants in Industry 4.0: a two-stage DEA approach in the Brazilian 3PL industry

Antonio Carlos Rodrigues; Roberta de Cássia Macedo; Aline Rodrigues Fernandes

Downloads: 0
Views: 14

Abstract

Paper aims: The main objective is to determine which Industry 4.0 (I4.0) technologies significantly impact the scale efficiency of 3PLs’ (Third Party Logistics).

Originality: This paper provides a significant academic contribution given that it is the first quantitative research endeavor to evaluate the influence of I4.0 applications on productivity within the Brazilian 3PL industry.

Research method: A two-stage Data Envelopment Analysis (DEA) model was adopted. The first stage of the DEA enabled the measurement of 3PL efficiency, and the second stage (Bootstrap Truncated Regression) allowed us to explore the relationship between efficiency and the I4.0 technologies. Secondary data from Revista Tecnologística provided the inputs, outputs, and contextual variables for this analysis.

Main findings: In the first stage of the analysis, a high average technical inefficiency was identified, suggesting managerial failures to efficiently use available resources. However, 3PLs demonstrated low-scale inefficiency, operating close to the optimal production scale. In the second stage, the contextual variables Drones, Big Data, and Business Intelligence were positively significant, while Internet of Things technology was negatively significant.

Implications for theory and practice: Our study enhances 3PL efficiency literature by applying DEA, considering contextual aspects, and exploring the adoption challenges of I4.0 technologies in emerging economies.

Supplementary Material


Supplementary Material – DEA Concepts and Returns to Scale Classification
 

Keywords

3PL, Industry 4.0, Efficiency, DEA, Bootstrap Truncated Regression

References

Abdel-Basset, M., Chang, V., & Nabeeh, N. A. (2021). An intelligent framework using disruptive technologies for COVID-19 analysis. Technological Forecasting and Social Change, 163, 120431. http://doi.org/10.1016/j.techfore.2020.120431. PMid:33162617.

Akbari, M., & Hopkins, J. L. (2022). Digital technologies as enablers of supply chain sustainability in an emerging economy. Operations Management Research : Advancing Practice Through Research, 15(3-4), 689-710. http://doi.org/10.1007/s12063-021-00226-8.

Akbari, M., Kok, S. K., Hopkins, J., Frederico, G. F., Nguyen, H., & Alonso, A. D. (2023). The changing landscape of digital transformation in supply chains: impacts of industry 4.0 in Vietnam. International Journal of Logistics Management. 35(4), 1040-1072. http://doi.org/10.1108/IJLM-11-2022-0442.

Arroyo, P., Gaytan, J., & de Boer, L. (2006). A survey of third party logistics in Mexico and a comparison with reports on Europe and USA. International Journal of Operations & Production Management, 26(6), 639-667. http://doi.org/10.1108/01443570610666984.

Associação Brasileira de Operadores Logísticos – ABOL. (2023). Perfil dos operadores logísticos 2022. São Paulo: ABOL.

Azadi, M., Moghaddas, Z., Farzipoor Saen, R., & Hussain, F. K. (2021). Financing manufacturers for investing in Industry 4.0 technologies: internal financing vs. external financing. International Journal of Production Research, 62(22), 1-17. http://doi.org/10.1080/00207543.2021.1912431.

Azadi, M., Moghaddas, Z., Cheng, T. C. E., & Farzipoor Saen, R. (2023). Assessing the sustainability of cloud computing service providers for Industry 4.0: a state-of-the-art analytical approach. International Journal of Production Research, 61(12), 4196-4213. http://doi.org/10.1080/00207543.2021.1959666.

Azadi, M., Toloo, M., Ramezani, F., Saen, R. F., Hussain, F. K., & Farnoudkia, H. (2024). Evaluating efficiency of cloud service providers in era of digital technologies. Annals of Operations Research, 342(2), 1049-1078. http://doi.org/10.1007/s10479-023-05257-x.

Balcombe, K., Fraser, I., Latruffe, L., Rahman, M., & Smith, L. (2008). An application of the DEA double bootstrap to examine sources of efficiency in Bangladesh rice farming. Applied Economics, 40(15), 1919-1925. http://doi.org/10.1080/00036840600905282.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092. http://doi.org/10.1287/mnsc.30.9.1078.

Bogetoft, P., & Otto, L. (2011). Benchmarking with DEA, SFA, and R (International Series in Operations Research & Management Science). New York: Springer.

Brasil. (2019, June 25). Decreto Nº 9.854, de 25 de Junho de 2019 Institui o Plano Nacional de Internet das Coisas e dispõe sobre a Câmara de Gestão e Acompanhamento do Desenvolvimento de Sistemas de Comunicação Máquina a Máquina e Internet das Coisas. Diário Oficial da República Federativa do Brasil.

Brasil. (2020, November 3). Resolução n.º 735, de 3 de novembro de 2020. Altera o Regulamento sobre Exploração do Serviço Móvel Pessoal por Meio de Rede Virtual, o Regulamento Geral de Portabilidade e o Regulamento Geral de Direitos do Consumidor de Serviços de Telecomunicações. Diário Oficial da República Federativa do Brasil. Retrieved in 2025, August 11, from https://www.anatel.gov.br/legislacao/resolucoes/2020/1483-resolucao-735

Caiado, R. G. G., Scavarda, L. F., Gavião, L. O., Ivson, P., Nascimento, D. L. M., & Garza-Reyes, J. A. (2021). A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management. International Journal of Production Economics, 231, 107883. http://doi.org/10.1016/j.ijpe.2020.107883.

Carbone, V., & Stone, M. A. (2005). Growth and relational strategies used by the European logistics service providers: Rationale and outcomes. Transportation Research Part E: Logistics and Transportation Review, 41(6), 495-510.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444. http://doi.org/10.1016/0377-2217(78)90138-8.

Chen, Z., Zhao, J., & Jin, C. (2023). Business intelligence for Industry 4.0: predictive models for retail and distribution. International Journal of Retail & Distribution Management. 53(3), 1-16. http://doi.org/10.1108/IJRDM-02-2023-0101.

Cook, W. D., Tone, K., & Zhu, J. (2014). Data envelopment analysis: Prior to choosing a model. Omega, 44, 1-4. http://doi.org/10.1016/j.omega.2013.09.004.

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis (2nd ed.). New York: Springer. http://doi.org/10.1007/978-0-387-45283-8.

Cooper, W. W., Seiford, L. M., & Zhu, J. (2011). Data Envelopment Analysis: History, Models, and Interpretations. In W. W. Cooper, L. M. Seiford & J. Zhu (Eds.), Handbook on data envelopment analysis (2nd ed., Vol. 164). New York: Springer. http://doi.org/10.1007/978-1-4419-6151-8_1.

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394. http://doi.org/10.1016/j.ijpe.2018.08.019.

Figueiredo, K. F., Fleury, P. F., & Wanke, P. (2000). Logística empresarial: a perspectiva brasileira (pp. 27-55). São Paulo: Atlas.

Fleury, P. F., & Ribeiro, A. F. M. (2003). A indústria de provedores de serviços logísticos no Brasil. In K. F. Figueiredo, P. F. Fleury & P. F. Wanke (Eds.), Logística e gerenciamento da cadeia de suprimentos: planejamento do fluxo e dos recursos (pp. 302-312). São Paulo: Atlas.

Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246. http://doi.org/10.1016/j.ijpe.2014.12.031.

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15-26. http://doi.org/10.1016/j.ijpe.2019.01.004.

Gujarati, D. (2021). Essentials of econometrics (5th ed.). New York: SAGE Publications.

Instituto de Logistica e Supply Chain – ILOS. (2024). ILOS Fast Reports: uso de tecnologia na logística brasileira. São Paulo: ILOS.

Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829-846. http://doi.org/10.1080/00207543.2018.1488086.

Ivanov, D., Sethi, S., Dolgui, A., & Sokolov, B. (2018). A survey on control theory applications to operational systems, supply chain management, and Industry 4.0. Annual Reviews in Control, 46, 134-147. http://doi.org/10.1016/j.arcontrol.2018.10.014.

Javaid, M., Khan, I. H., Singh, R. P., Rab, S., & Suman, R. (2022). Exploring contributions of drones towards Industry 4.0. The Industrial Robot, 49(3), 476-490. http://doi.org/10.1108/IR-09-2021-0203.

Kalantary, M., & Farzipoor Saen, R. (2019). Assessing sustainability of supply chains: an inverse network dynamic DEA model. Computers & Industrial Engineering, 135, 1224-1238. http://doi.org/10.1016/j.cie.2018.11.009.

Kumawat, P. (2024). Using 3rd -party logistics services or developing own capability to cater to ecommerce demands: a comparative analysis. International Journal of Supply Chain Management, 13(5), 18-26. http://doi.org/10.59160/ijscm.v13i5.6265.

Lieb, R., & Bentz, B. A. (2005). The use of third-party logistics services by large american manufacturers: the 2004 survey. Transportation Journal, 44(2), 5-15. http://doi.org/10.2307/20713595.

Lieb, R. C., & Lieb, K. J. (2016). 3PL CEO perspectives on the current status and future prospects of the third-party logistics industry in north america: the 2014 survey. Transportation Journal, 55(1), 78-92. http://doi.org/10.5325/transportationj.55.1.0078.

Maghazei, O., Lewis, M. A., & Netland, T. H. (2022). Emerging technologies and the use case: a multi‐year study of drone adoption. Journal of Operations Management, 68(6-7), 560-591. http://doi.org/10.1002/joom.1196.

Marchet, G., Melacini, M., Sassi, C., & Tappia, E. (2017). Assessing efficiency and innovation in the 3PL industry: an empirical analysis.International Journal of Logistics Research and Applications,20(1), 53-72.

Marchetti, D., & Wanke, P. (2017). Brazil’s rail freight transport: efficiency analysis using two-stage DEA and cluster-driven public policies. Socio-Economic Planning Sciences. 59, 26-42. http://doi.org/10.1016/j.seps.2016.10.005.

Mastos, T. D., Nizamis, A., Terzi, S., Gkortzis, D., Papadopoulos, A., Tsagkalidis, N., Ioannidis, D., Votis, K., & Tzovaras, D. (2021). Introducing an application of an industry 4.0 solution for circular supply chain management. Journal of Cleaner Production, 300, 126886. http://doi.org/10.1016/j.jclepro.2021.126886.

Min, H., & Joo, S. J. (2006). Benchmarking the operational efficiency of third party logistics providers using data envelopment analysis. Supply Chain Management, 11(3), 259-265. http://doi.org/10.1108/13598540610662167.

Min, H., & Joo, S. J. (2009). Benchmarking third‐party logistics providers using data envelopment analysis: an update. Benchmarking, 16(5), 572-587. http://doi.org/10.1108/14635770910987814.

Min, H., DeMond, S., & Joo, S. (2013). Evaluating the comparative managerial efficiency of leading third party logistics providers in North America. Benchmarking, 20(1), 62-78. http://doi.org/10.1108/14635771311299498.

Muniz Junior, J., Moschetto, G. P., & Wintersberger, D. (2023). Industry 4.0 at Brazilian modular consortium: work, process and knowledge in engine supply chain. Production, 33, e20220074. http://doi.org/10.1590/0103-6513.20220074.

Panayides, P. M., Maxoulis, C. N., Wang, T. F., & Ng, K. Y. A. (2009). A critical analysis of DEA applications to seaport economic efficiency measurement. Transport Reviews, 29(2), 183-206. http://doi.org/10.1080/01441640802260354.

Pishdar, M., Danesh Shakib, M., Antucheviciene, J., & Vilkonis, A. (2021). Interval Type-2 fuzzy super SBM network DEA for assessing sustainability performance of third-party logistics service providers considering circular economy strategies in the era of Industry 4.0. Sustainability, 13(11), 6497. http://doi.org/10.3390/su13116497.

Rahman, S., & Jim Wu, Y. C. (2011). Logistics outsourcing in China: the manufacturer‐cum‐supplier perspective. Supply Chain Management: An International Journal, 16(6), 462-473.

Raj, A., Dwivedi, G., Sharma, A., Lopes de Sousa Jabbour, A. B., & Rajak, S. (2020). Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: an inter-country comparative perspective. International Journal of Production Economics, 224, 107546. http://doi.org/10.1016/j.ijpe.2019.107546.

Rajnoha, R., & Hadač, J. (2024). Strategic key elements in big data analytics as driving forces of IoT manufacturing value creation: a challenge for research framework. IEEE Transactions on Engineering Management, 71, 90-105. http://doi.org/10.1109/TEM.2021.3113502.

Rodrigues, A. C., Martins, R. S., Wanke, P. F., & Siegler, J. (2018). Efficiency of specialized 3PL providers in an emerging economy. International Journal of Production Economics, 205, 163-178. http://doi.org/10.1016/j.ijpe.2018.09.012.

Rosin, F., Forget, P., Lamouri, S., & Pellerin, R. (2020). Impacts of Industry 4.0 technologies on Lean principles. International Journal of Production Research, 58(6), 1644-1661. http://doi.org/10.1080/00207543.2019.1672902.

Sahay, B., & Mohan, R. (2006). 3PL practices: an Indian perspective. International Journal of Physical Distribution & Logistics Management, 36(9), 666-689. http://doi.org/10.1108/09600030610710845.

Simar, L., & Wilson, P. W. (2000). Statistical inference in nonparametric frontier models: the state of the art. Journal of Productivity Analysis, 13(1), 49-78. http://doi.org/10.1023/A:1007864806704.

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136(1), 31-64. http://doi.org/10.1016/j.jeconom.2005.07.009.

Simar, L., & Wilson, P. W. (2011). Two-stage DEA: caveat emptor. Journal of Productivity Analysis, 36(2), 205-218. http://doi.org/10.1007/s11123-011-0230-6.

Simm, J., & Besstremyannaya, G. (2020). rDEA: Robust Data Envelopment Analysis (DEA) for R. R package (Version 1.2-6). Retrieved in 1 July 2024, from https://CRAN.R-project.org/package=rDEA

Singh, H., & Singh, B. (2023). Industry 4.0 technologies integration with lean production tools: a review. The TQM Journal. 36(8), 2507-2526. http://doi.org/10.1108/TQM-02-2022-0065.

Singh, M., Goyat, R., & Panwar, R. (2024). Fundamental pillars for industry 4.0 development: implementation framework and challenges in manufacturing environment. The TQM Journal, 36(1), 288-309. http://doi.org/10.1108/TQM-07-2022-0231.

Sony, M., & Naik, S. (2020). Industry 4.0 integration with socio-technical systems theory: a systematic review and proposed theoretical model. Technology in Society, 61, 101248. http://doi.org/10.1016/j.techsoc.2020.101248.

Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157-169. http://doi.org/10.1016/j.jmsy.2018.01.006.

Tran, T. H., Lu, W.-M., & Kweh, Q. L. (2023). Sustainable investment initiatives and the performance of stakeholders involved in multinational technology companies’ supply chains: linear or nonlinear effects? Kybernetes. 53(11), 3977-4005. http://doi.org/10.1108/K-02-2023-0195.

Vivaldini, M., & Pires, S. R. I. (2020). The brazilian logistics service provider on the internet. Gestão & Produção, 27(4), e4430. http://doi.org/10.1590/0104-530x4430.

Wang, Y., Lin, Y., Zhong, R. Y., & Xu, X. (2019). IoT-enabled cloud-based additive manufacturing platform to support rapid product development. International Journal of Production Research, 57(12), 3975-3991. http://doi.org/10.1080/00207543.2018.1516905.

Wanke, P. F. (2012). Determinants of scale efficiency in the Brazilian 3PL industry: a 10-year analysis. International Journal of Production Research, 50(9), 2423-2438. http://doi.org/10.1080/00207543.2011.581005.

Wanke, P. F., & Affonso, C. R. (2011). Determinantes da eficiência de escala no setor brasileiro de operadores logísticos. Production, 21(1), 53-63. http://doi.org/10.1590/S0103-65132010005000045.

Wanke, P., & Barros, C. P. (2016). New evidence on the determinants of efficiency at Brazilian ports: a bootstrapped DEA analysis. International Journal of Shipping and Transport Logistics, 8(3), 250. http://doi.org/10.1504/IJSTL.2016.076240.

Wanke, P., Arkader, R., & Fernanda Hijjar, M. (2007). Logistics sophistication, manufacturing segments and the choice of logistics providers. International Journal of Operations & Production Management, 27(5), 542-559. http://doi.org/10.1108/01443570710742401.

Woo, J. H., Zhu, H., Lee, D. K., Chung, H., & Jeong, Y. (2021). Assessment framework of smart shipyard maturity level via data envelopment analysis. Sustainability, 13(4), 1964. http://doi.org/10.3390/su13041964.

Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56(8), 2941-2962. http://doi.org/10.1080/00207543.2018.1444806.

Yang, C.C., Wang, C.N., & Ngo, T.T. (2024). Evaluating the relative efficiency of third party logistics companies using data envelopment analysis: a case study in road transportation and warehousing. Research in Transportation Business & Management, 56, 101181. http://doi.org/10.1016/j.rtbm.2024.101181.

Zhou, G., Min, H., Xu, C., & Cao, Z. (2008). Evaluating the comparative efficiency of Chinese third‐party logistics providers using data envelopment analysis. International Journal of Physical Distribution & Logistics Management, 38(4), 262-279. http://doi.org/10.1108/09600030810875373.

Zhou, X., Wang, Y., Chai, J., Wang, L., Wang, S., & Lev, B. (2019). Sustainable supply chain evaluation: a dynamic double frontier network DEA model with interval type-2 fuzzy data. Information Sciences, 504, 394-421. http://doi.org/10.1016/j.ins.2019.07.033.
 


Submitted date:
07/01/2024

Accepted date:
06/22/2025

68cabeeba9539509220cdb66 production Articles
Links & Downloads

Production

Share this page
Page Sections