Productivity enhancement in Indian auto component manufacturing supply chain with IoT using neural networks
Tushar D. Bhoite; Rajesh B. Buktar
Abstract
Keywords
References
Alzahrani, A., & Asghar, M. Z. (2023). Intelligent risk prediction system in IOT-based supply chain management in Logistics Sector.
Anthony Junior, B. (2024). Enabling interoperable distributed ledger technology with legacy platforms for enterprise digitalization.
Barari, A., de Sales Guerra Tsuzuki, M., Cohen, Y., & Macchi, M. (2021). Editorial: Intelligent Manufacturing Systems Towards Industry 4.0 ERA.
Borja-Gonzales, A. A., Perez-Soto, A. B., & Flores-Perez, A. (2024). Stockout reduction using forecasting methods, the EOQ model and a safety stock in a Peruvian SME in the commercial sector. In
Calabrese, G. G., Falavigna, G., & Ippoliti, R. (2024). Innovation policy and corporate finance: the Italian automotive supply chain and its transition to Industry 4.0.
Chen, W. (2020). Intelligent manufacturing production line data monitoring system for industrial internet of things.
Dash, A., Pant, P., Sarmah, S. P., & Tiwari, M. K. (2024). The impact of IoT on manufacturing firm performance: the moderating role of firm-level IoT commitment and expertise.
Elbasani, E., Siriporn, P., & Choi, J. S. (2010). A survey on RFID in industry 4.0. In G. Kanagachidambaresan, R. Anand, E. Balasubramanian & V. Mahima (Eds.),
Fang, W., Guo, Y., Liao, W., Ramani, K., & Huang, S. (2010). Big data driven jobs remaining time prediction in discrete manufacturing system: A deep learning-based approach.
Farooq, M. S., Abdullah, M., Riaz, S., Alvi, A., Rustam, F., Flores, M. A., Galán, J. C., Samad, M. A., & Ashraf, I. (2023). A survey on the role of industrial IOT in manufacturing for implementation of smart industry.
Fu, X., Xu, X., & Li, W. (2024). Cascading failure resilience analysis and recovery of Automotive Manufacturing Supply Chain Networks considering enterprise roles.
Gharibvand, V., Kolamroudi, M. K., Zeeshan, Q., Çınar, Z. M., Sahmani, S., Asmael, M., & Safaei, B. (2024). Cloud based manufacturing: a review of recent developments in architectures, technologies, infrastructures, platforms and associated challenges.
Ghosh, S., Bhowmik, C., Sinha, S., Raut, R. D., Mandal, M. C., & Ray, A. (2023). An integrated multi-criteria decision-making and multivariate analysis towards sustainable procurement with application in Automotive Industry.
Hashemi-Amiri, O., Ghorbani, F., & Ji, R. (2023). Integrated Supplier selection, scheduling, and routing problem for perishable product supply chain: a distributionally robust approach.
Jauhar, S. K., Jani, S. M., Kamble, S. S., Pratap, S., Belhadi, A., & Gupta, S. (2023). How to use no-code artificial intelligence to predict and minimize the inventory distortions for Resilient Supply Chains.
Kanakana-Katumba, M. G., Maladzi, R. W., & Oyesola, M. O. (2022). Smart manufacturing systems for small medium enterprises: a conceptual data collection architecture. In
Kayvanfar, V., Elomri, A., Kerbache, L., Vandchali, H. R., & El Omri, A. (2024). A review of decision support systems in the Internet of Things and supply chain and logistics using web content mining.
Kumar, D., Soni, G., Jabeen, F., Tiwari, N. K., Sariyer, G., & Ramtiyal, B. (2024). A hybrid Bayesian approach for assessment of industry 4.0 technologies towards achieving decarbonization in manufacturing industry.
Lawley, A., Hampson, R., Worrall, K., & Dobie, G. (2024). A cost focused framework for optimizing collection and annotation of ultrasound datasets.
Liu, L., Song, W., & Liu, Y. (2023). Leveraging digital capabilities toward a circular economy: Reinforcing Sustainable Supply Chain Management with industry 4.0 technologies.
Lu, H., Zhao, G., & Liu, S. (2024). Integrating circular economy and industry 4.0 for Sustainable Supply Chain Management: a dynamic capability view.
Mastos, T. D., Nizamis, A., Vafeiadis, T., Alexopoulos, N., Ntinas, C., Gkortzis, D., Papadopoulos, A., Ioannidis, D., & Tzovaras, D. (2020). Industry 4.0 sustainable supply chains: an application of an iot enabled scrap metal management solution.
McKechnie, T., Kazi, T., Wang, A., Zhang, S., Thabane, A., Nanji, K., Staibano, P., Park, L. J., Doumouras, A., Eskicioglu, C., Thabane, L., Parpia, S., & Bhandari, M. (2024). Pilot and feasibility trials in surgery are incompletely reported according to the CONSORT checklist: a meta-research study.
Muhammad, M. S., Kerbache, L., & Elomri, A. (2022). Potential of additive manufacturing for upstream automotive supply chains.
Ojha, R., Ghadge, A., Tiwari, M. K., & Bititci, U. S. (2018). Bayesian network modelling for Supply Chain Risk Propagation.
Rath, K. C., Khang, A., & Roy, D. (2024). The role of internet of things (IOT) technology in Industry 4.0 economy. In A. Khang, V. Abdullayev, V. Hahanov & V. Shah (Eds.), A
Rísquez Ramos, M., & Ruiz-Gálvez, M. E. (2024). The transformation of the automotive industry toward electrification and its impact on Global Value Chains: Inter-plant competition, employment, and supply chains.
Royandi, M. A., & Hung, J.-P. (2022). Design of an affordable cross-platform monitoring application based on a website Creation Tool and its implementation on a CNC lathe machine.
Shahin, M., Frank Chen, F., Bouzary, H., & Hosseinzadeh, A. (2023). Deploying convolutional neural network to reduce waste in production system.
Shahin, M., Maghanaki, M., Hosseinzadeh, A., & Chen, F. F. (2024). Advancing network security in industrial IoT: a deep dive into AI-enabled intrusion detection systems.
Sharma, A. K., Peelam, M. S., Chauasia, B. K., & Chamola, V. (2024). QIoTChain: quantum IoT‐blockchain fusion for advanced data protection in Industry 4.0.
Sharma, S. K., Srivastava, P. R., Kumar, A., Jindal, A., & Gupta, S. (2023a). Supply chain vulnerability assessment for manufacturing industry.
Sharma, V., Mahanayak, S. P., Thapa, T., Mishra, S., & Alkhayyat, A. (2023b). Leveraging the synergy of edge computing and IOT in Supply Chain Management. In
Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality.
Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma, S., Li, C., Singh, S., Hussan, W. U., Salah, B., Saleem, W., & Mohamed, A. (2022). A sustainable productive method for enhancing operational excellence in Shop Floor Management for Industry 4.0 using hybrid integration of Lean and Smart Manufacturing: an ingenious case study.
Udo, W. S., Kwakye, J. M., Ekechukwu, D. E., & Ogundipe, O. B. (2024). Optimizing wind energy systems using machine learning for predictive maintenance and efficiency enhancement.
Wanyama, J., Bwambale, E., Kiraga, S., Katimbo, A., Nakawuka, P., Kabenge, I., & Oluk, I. (2024). A systematic review of fourth industrial revolution technologies in smart irrigation: constraints, opportunities, and future prospects for sub-Saharan Africa.
Yesodha, K. R., Jagadeesan, A., & Logeshwaran, J. (2023). IOT applications in modern supply chains: Enhancing efficiency and product quality. In
Zhang, Y., Kishk, M. A., & Alouini, M.-S. (2023). Hap-enabled communications in rural areas: When diverse services meet inadequate communication infrastructures.
Submitted date:
05/13/2024
Accepted date:
02/06/2025