Production
https://prod.org.br/article/doi/10.1590/0103-6513.20240005
Production
Research Article

A new tool for evaluating supply risk management

Maria Silene Alexandre Leite; Fernanda Paes Arantes; Antonio Cezar Bornia; Liane Márcia Freitas e Silva; Kathyana Vanessa Diniz Santos; José Flavio Rique Júnior

Downloads: 1
Views: 285

Abstract

Paper aims: This research proposes a tool for assessing supply risk, taking into account supply chain performance criteria.

Originality: The results show that risk management can contribute to better supply chain performance when supplier selection procedures consider the risks involved and how they are related to supply chain performance criteria.

Research method: A systematic literature review (SLR) was carried out on supplier selection, performance evaluation and risk management in the supply chain. The statistical tool IRT (Item Response Theory) was used to establish the level of difficulty in eliminating the types of risks identified and associated with the supply chain performance criteria, based on the probability of each situation occurring.

Main findings: With this scale, it is possible to identify which types of risk and performance criteria are most difficult for suppliers to meet and then define a plan for mitigating the risks that are harder to eliminate.

Implications for theory and practice: Based on the tool developed, organizations have greater understanding of how risks affect the performance of their supply chain and with that knowledge they can act to minimize the effects of the risks that are most difficult to eliminate.

Keywords

Supply chain management, Performance measurement, Risk management, Supplier risk, Item Response Theory (IRT)

References

Acar, A. Z., Önden, İ., & Gürel, Ö. (2016). Evaluation of the parameters of the green supplier selection decision in textile industry. Fibres & Textiles in Eastern Europe, 24(5), 8-14. http://doi.org/10.5604/12303666.1215520.

Akcan, S., & Güldeş, M. (2019). Integrated multicriteria decision-making methods to solve supplier selection problem: A case study in a hospital. Journal of Healthcare Engineering, 2019, 5614892. http://doi.org/10.1155/2019/5614892. PMid:31687120.

Alizadeh, A., & Yousefi, S. (2019). An integrated Taguchi loss function–fuzzy cognitive map–MCGP with utility function approach for supplier selection problem. Neural Computing & Applications, 31(11), 7595-7614. http://doi.org/10.1007/s00521-018-3591-1.

Alkahtani, M., Al-Ahmari, A., Kaid, H., & Sonboa, M. (2019). Comparison and evaluation of multi-criteria supplier selection approaches: a case study. Advances in Mechanical Engineering, 11(2), 1-19. http://doi.org/10.1177/1687814018822926.

Amindoust, A. (2018). Supplier selection considering sustainability measures: an application of weight restriction fuzzy-DEA approach. Operations Research, 52(3), 981-1001. http://doi.org/10.1051/ro/2017033.

Amirteimoori, A., & Khoshandam, L. (2011). A data envelopment analysis approach to supply chain efficiency. Advances in Decision Sciences, 2011, 1-8. http://doi.org/10.1155/2011/608324.

Arslan, Ö., Karakurt, N., Cem, E., & Cebi, S. (2023). Risk analysis in the food cold chain using decomposed fuzzy set-based FMEA approach. Sustainability (Basel), 15(17), 13169. http://doi.org/10.3390/su151713169.

Ashtarinezhad, E., Sarfaraz, A. H., & Navabakhsh, M. (2018). Supplier evaluation and categorize with combine Fuzzy Dematel and Fuzzy Inference System. Data in Brief, 18, 1149-1156. http://doi.org/10.1016/j.dib.2018.03.077. PMid:29900289.

Ayağ, Z., & Samanlioglu, F. (2016). An intelligent approach to supplier evaluation in automotive sector. Journal of Intelligent Manufacturing, 27(4), 889-903. http://doi.org/10.1007/s10845-014-0922-7.

Barbetta, P. A., Trevisan, L. M., Tavares, H., & de Macedo Azevedo, T. C. A. (2014). Aplicação da Teoria da Resposta ao Item uni e multidimensional. Estudos em Avaliação Educacional, 25(57), 280-302. http://doi.org/10.18222/eae255720142832.

Bouhnik, D., Giat, Y., & Zarruk, I. (2017). Supplier selection and assessment by university procurement officers. International Journal of Information Systems and Supply Chain Management, 10(1), 1-15. http://doi.org/10.4018/IJISSCM.2017010101.

Casado, R. S. G. R., Silva, M. M., & Silva, L. C. (2023). Multi-criteria decision model for risk prioritisation involving multiple decision-makers: an application of composition of probabilistic preferences combined with FMEA in the supply chain. International Journal of Quality & Reliability Management, 40(3), 709-726. http://doi.org/10.1108/IJQRM-03-2020-0065.

Chatterjee, K., Pamucar, D., & Zavadskas, E. K. (2018). Evaluating the performance of suppliers based on using the R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production, 184, 101-129. http://doi.org/10.1016/j.jclepro.2018.02.186.

Cheaitou, A., Larbi, R., & Al Housani, B. (2019). Decision making framework for tender evaluation and contractor selection in public organizations with risk considerations. Socio-Economic Planning Sciences, 68, 100620. http://doi.org/10.1016/j.seps.2018.02.007.

Chen, H. M. W., Chou, S. Y., Luu, Q. D., & Yu, T. H. K. (2016). A fuzzy MCDM approach for green supplier selection from the economic and environmental aspects. Mathematical Problems in Engineering, 2016, 1-10. http://doi.org/10.1155/2016/8097386.

Chen, J., Sohal, A. S., & Prajogo, D. I. (2013). Supply chain operational risk mitigation: a collaborative approach. International Journal of Production Research, 51(7), 2186-2199. http://doi.org/10.1080/00207543.2012.727490.

Chung, K. C. (2015). Applying analytical hierarchy process to supplier selection and evaluation in the hospitality industry: a multiobjective approach. Acta Oeconomica, 65(s2), 309-323. http://doi.org/10.1556/032.65.2015.s2.23.

Das, S. P., Vishnu, C. R., Anish, M. N., Sridharan, R., & Kumar, P. R. (2024). Reliable and flexible supplier selection problem: a genetic algorithm inspired simulation approach. International Journal of Logistics Systems and Management, 47(2), 185-209. http://doi.org/10.1504/IJLSM.2024.136487.

Diouf, M., & Kwak, C. (2018). Fuzzy AHP, DEA, and Managerial analysis for supplier selection and development; from the perspective of open innovation. Sustainability (Basel), 10(10), 3779. http://doi.org/10.3390/su10103779.

Dotoli, M., Epicoco, N., Falagario, M., & Sciancalepore, F. (2016). A stochastic cross‐efficiency data envelopment analysis approach for supplier selection under uncertainty. International Transactions in Operational Research, 23(4), 725-748. http://doi.org/10.1111/itor.12155.

Duong, A. T. B., Vo, V. X., Carvalho, M. D. S., Sampaio, P., & Truong, H. Q. (2023). Risks and supply chain performance: globalization and COVID-19 perspectives. International Journal of Productivity and Performance Management, 72(7), 1962-1986. http://doi.org/10.1108/IJPPM-03-2021-0179.

Er Kara, M., & Oktay Fırat, S. Ü. (2018). Supplier risk assessment based on best-worst method and K-means clustering: a case study. Sustainability (Basel), 10(4), 1066. http://doi.org/10.3390/su10041066.

Faisal, M. N., Al-Esmael, B., & Sharif, K. J. (2017). Supplier selection for a sustainable supply chain: triple bottom line (3BL) and analytic network process approach. Benchmarking, 24(7), 1956-1976. http://doi.org/10.1108/BIJ-03-2016-0042.

Fallahpour, A., Olugu, E. U., Musa, S. N., Khezrimotlagh, D., & Wong, K. Y. (2016). An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Computing & Applications, 27(3), 707-725. http://doi.org/10.1007/s00521-015-1890-3.

Ganguly, A., Kumar, C., & Chatterjee, D. (2019). A decision-making model for supplier selection in Indian pharmaceutical organizations. Journal of Health Management, 21(3), 351-371. http://doi.org/10.1177/0972063419868552.

Giacomelli, S. C., de Assis, M. A. A., de Andrade, D. F., Schmitt, J., Hinnig, P. D. F., Borgatto, A. F., Engel, R., Vieira, F. G. K., Fiates, G. M. R., & Di Pietro, P. F. (2021). Development of a Food-Based Diet Quality Scale for Brazilian schoolchildren using item response theory. Nutrients, 13(9), 3175. http://doi.org/10.3390/nu13093175. PMid:34579052.

Hou, Q., & Xie, L. (2019). Research on supplier evaluation in a green supply chain. Discrete Dynamics in Nature and Society, 2019, 1-14. http://doi.org/10.1155/2019/2601301.

Imran, M., Agha, M. H., Ahmed, W., Sarkar, B., & Ramzan, M. B. (2020). Simultaneous customers and supplier’s prioritization: an AHP-based fuzzy inference decision support system (AHP-FIDSS). International Journal of Fuzzy Systems, 22(8), 2625-2651. http://doi.org/10.1007/s40815-020-00977-9.

Kant, R., & Dalvi, M. V. (2017). Development of questionnaire to assess the supplier evaluation criteria and supplier selection benefits. Benchmarking, 24(2), 359-383. http://doi.org/10.1108/BIJ-12-2015-0124.

Karami, S., Ghasemy Yaghin, R., & Mousazadegan, F. (2021). Supplier selection and evaluation in the garment supply chain: an integrated DEA–PCA–VIKOR approach. Journal of the Textile Institute, 112(4), 578-595. http://doi.org/10.1080/00405000.2020.1768771.

Kawa, A., & Koczkodaj, W. W. (2015). Supplier evaluation process by pairwise comparisons. Mathematical Problems in Engineering, 2015, 1-9. http://doi.org/10.1155/2015/976742.

Khan, S. A., Kusi-Sarpong, S., Arhin, F. K., & Kusi-Sarpong, H. (2018). Supplier sustainability performance evaluation and selection: A framework and methodology. Journal of Cleaner Production, 205, 964-979. http://doi.org/10.1016/j.jclepro.2018.09.144.

Kilic, H. S., Canbakis, S. K., Karabas, M., Koseoglu, S., Unal, E., & Kalender, Z. T. (2023). Integrated Supply Chain Risk Assessment Methodology Based on Modified FMEA. Journal of Risk Analysis and Crisis Response, 13(2), 93-116. http://doi.org/10.54560/jracr.v13i2.359.

Lacerda, R. T. D. O., Ensslin, L., & Ensslin, S. R. (2012). Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, 19(1), 59-78. http://doi.org/10.1590/S0104-530X2012000100005.

Ledic, J., Andrade, D. F., Klein, L. L., Tirloni, A. S., & Moro, A. R. P. (2022). Scale to assess quality of working life in university environment by using item response theory. Revista de Administração Mackenzie, 23(3), eRAMG220102. http://doi.org/10.1590/1678-6971/eRAMG220102.en.

Lee, C. S., Chung, C. C., Lee, H. S., Gan, G. Y., & Chou, M. T. (2016). An interval-valued fuzzy number approach for supplier selection. Journal of Marine Science and Technology, 24(3), 2. http://doi.org/10.6119/JMST-015-0521-8.

Li, L., & Wang, H. (2018). A green supplier assessment method for manufacturing enterprises based on rough ANP and evidence theory. Information (Basel), 9(7), 162. http://doi.org/10.3390/info9070162.

Lima-Junior, F. R., & Carpinetti, L. C. R. (2016). Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management. International Journal of Production Economics, 174, 128-141. http://doi.org/10.1016/j.ijpe.2016.01.023.

Mahdiloo, M., Saen, R. F., & Lee, K. H. (2015). Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis. International Journal of Production Economics, 168, 279-289. http://doi.org/10.1016/j.ijpe.2015.07.010.

Mahmoudifard, S. M., Shabanpour, R., Golshani, N., Mohammadian, K., & Mohammadian, A. (2018). Supplier Evaluation Model in Freight Activity Microsimulation Estimator. Transportation Research Record: Journal of the Transportation Research Board, 2672(9), 70-80. http://doi.org/10.1177/0361198118777084.

Modares, A., Farimani, N. M., & Dehghanian, F. (2024). A new vendor-managed inventory four-tier model based on reducing environmental impacts and optimal suppliers selection under uncertainty. Journal of Industrial and Management Optimization, 20(1), 188-220. http://doi.org/10.3934/jimo.2023074.

Mohammed, A. (2020). Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach. Annals of Operations Research, 293(2), 639-668. http://doi.org/10.1007/s10479-019-03167-5.

Mohammed, A., Harris, I., Soroka, A., Naim, M., Ramjaun, T., & Yazdani, M. (2021). Gresilient supplier assessment and order allocation planning. Annals of Operations Research, 296(1-2), 335-362. http://doi.org/10.1007/s10479-020-03611-x.

Mukherjee, S., De, A., & Roy, S. (2024). Supply chain risk prioritization: a multi-criteria based Intuitionistic Fuzzy TOPSIS approach. International Journal of Quality & Reliability Management, 41(6), 1693-1725. http://doi.org/10.1108/IJQRM-07-2023-0214.

Nikfarjam, H., Rostamy-Malkhalifeh, M., & Noura, A. (2018). A new robust dynamic data envelopment analysis approach for sustainable supplier evaluation. Advances in Operations Research, 2018, 1-20. http://doi.org/10.1155/2018/7625025.

Norrman, A., & Jansson, U. (2004). Ericsson’s proactive supply chain risk management approach after a serious sub‐supplier accident. International Journal of Physical Distribution & Logistics Management, 34(5), 434-456. http://doi.org/10.1108/09600030410545463.

Okwu, M. O., & Tartibu, L. K. (2020). Sustainable supplier selection in the retail industry: A TOPSIS-and ANFIS-based evaluating methodology.International journal of engineering business management,12, 1847979019899542.

Pamucar, D., & Ecer, F. (2020). Prioritizing the weights of the evaluation criteria under fuzziness: The fuzzy full consistency method–FUCOM-F.Facta Universitatis, Series. Mechanical Engineering (New York, N.Y.), 18(3), 419-437.

Pamucar, D., Yazdani, M., Obradovic, R., Kumar, A., & Torres‐Jiménez, M. (2020). A novel fuzzy hybrid neutrosophic decision‐making approach for the resilient supplier selection problem. International Journal of Intelligent Systems, 35(12), 1934-1986. http://doi.org/10.1002/int.22279.

Parast, M. M., & Subramanian, N. (2021). An examination of the effect of supply chain disruption risk drivers on organizational performance: evidence from Chinese supply chains. Supply Chain Management, 26(4), 548-562. http://doi.org/10.1108/SCM-07-2020-0313.

Patil, V. H., McPherson, M. Q., & Friesner, D. (2010). The use of exploratory factor analysis in public health: A note on parallel analysis as a factor retention criterion. American Journal of Health Promotion, 24(3), 178-181. http://doi.org/10.4278/ajhp.08033131. PMid:20073383.

Pérez-Velázquez, A., Oro-Carralero, L. L., & Moya-Rodríguez, J. L. (2020). Supplier selection for photovoltaic module installation utilizing fuzzy inference and the VIKOR method: A green approach. Sustainability (Basel), 12(6), 2242. http://doi.org/10.3390/su12062242.

Pham, H. T., Quang, H. T., Sampaio, P., Carvalho, M., Tran, D. L. A., Vo, V. X., & Duong, B. A. T. (2023). The impact of global risks on supply chain performance. An empirical study on construction sector in the COVID-19 pandemic. International Journal of Quality & Reliability Management, 40(4), 1009-1035. http://doi.org/10.1108/IJQRM-03-2022-0084.

Phochanikorn, P., & Tan, C. (2019). A new extension to a multi-criteria decision-making model for sustainable supplier selection under an intuitionistic fuzzy environment. Sustainability (Basel), 11(19), 5413. http://doi.org/10.3390/su11195413.

Restrepo, R., & Villegas, J. G. (2019). Supplier evaluation and classification in a Colombian motorcycle assembly company using data envelopment analysis. Academia (Caracas), 32(2), 159-180. http://doi.org/10.1108/ARLA-04-2017-0107.

Santos, K. V. D., Arantes, F. P., Leite, M. S. A., & Bornia, A. C. (2023). Supplier’s performance evaluation in supply chains using item response theory. International Journal of Services and Operations Management, 45(4), 530-551. http://doi.org/10.1504/IJSOM.2023.132858.

Segura, M., & Maroto, C. (2017). A multiple criteria supplier segmentation using outranking and value function methods. Expert Systems with Applications, 69, 87-100. http://doi.org/10.1016/j.eswa.2016.10.031.

Song, S., Tappia, E., Song, G., Shi, X., & Cheng, T. C. E. (2024). Fostering supply chain resilience for omni-channel retailers: A two-phase approach for supplier selection and demand allocation under disruption risks. Expert Systems with Applications, 239, 122368. http://doi.org/10.1016/j.eswa.2023.122368.

Su, J., & Gargeya, V. B. (2016). Supplier selection in small-and medium-sized firms: The case of the US textile and apparel industry. American Journal of Business, 31(4), 166-186. http://doi.org/10.1108/AJB-12-2015-0037.

Sureeyatanapas, P., Waleekhajornlert, N., Arunyanart, S., & Niyamosoth, T. (2020). Resilient supplier selection in electronic components procurement: An integration of evidence theory and rule-based transformation into TOPSIS to tackle uncertain and incomplete information. Symmetry, 12(7), 1109. http://doi.org/10.3390/sym12071109.

Tavana, M., Yazdani, M., & Di Caprio, D. (2017). An application of an integrated ANP–QFD framework for sustainable supplier selection. International Journal of Logistics, 20(3), 254-275. http://doi.org/10.1080/13675567.2016.1219702.

Uçal Sarı, İ., Çayır Ervural, B., & Bozat, S. (2017). Analyzing criteria used in supplier evaluation by DEMATEL method in sustainable supply chain management and an application to health sector. Pamukkale University Journal of Engineering Sciences, 23(4), 477-485. http://doi.org/10.5505/pajes.2017.14892.

Wajid, A., Shaikh, A. H. S., Almashaqbeh, H. A., Al Sabi, MHD S., & Raza, A. (2023). Factors effecting on supply chain management performance in textile industries of Pakistan. International Journal of Social Science & Entrepreneurship, 3(2), 163-180. http://doi.org/10.58661/ijsse.v3i2.57.

Wang, K. Q., Liu, H. C., Liu, L., & Huang, J. (2017). Green supplier evaluation and selection using cloud model theory and the QUALIFLEX method. Sustainability (Basel), 9(5), 688. http://doi.org/10.3390/su9050688.

Zakeri, S., Konstantas, D., Bratvold, R. B., & Pamucar, D. (2023). A supplier selection model using the triangular fuzzy-grey numbers. IEEE Access : Practical Innovations, Open Solutions, 11, 107511-107532. http://doi.org/10.1109/ACCESS.2023.3320032.

Zarbakhshnia, N., & Jaghdani, T. J. (2018). Sustainable supplier evaluation and selection with a novel two-stage DEA model in the presence of uncontrollable inputs and undesirable outputs: a plastic case study. International Journal of Advanced Manufacturing Technology, 97(5-8), 2933-2945. http://doi.org/10.1007/s00170-018-2138-z.

Zhang, L., Dou, Y., & Wang, H. (2023). Green supply chain management, risk-taking, and corporate value—Dual regulation effect based on technological innovation capability and supply chain concentration. Frontiers in Environmental Science, 11, 1096349. http://doi.org/10.3389/fenvs.2023.1096349.
 


Submitted date:
01/09/2024

Accepted date:
05/19/2024

66b12545a953951921157df3 production Articles
Links & Downloads

Production

Share this page
Page Sections