Simulating continuance and resilience: an agent-based model for nanostores operations
Agatha Clarice da Silva-Ovando; Gonzalo Mejía; Christopher Mejía-Argueta; Daniela Granados Rivera; Dayana Nicol Yugar Quiroz; Mario Chong
Abstract
Keywords
References
Awasthi, A., Chauhan, S. S., & Goyal, S. K. (2011). A multi-criteria decision making approach for location planning for urban distribution centers under uncertainty.
Bartik, A. W., Bertrand, M., Cullen, Z. B., Glaeser, E. L., Luca, M., & Stanton, C. T. (2020).
Bierlaire, M. (2023).
Boulaksil, Y., & Belkora, M. J. (2017). Distribution strategies toward nanostores in emerging markets: the Valencia case
Boulaksil, Y., Fransoo, J. C., Blanco, E. E., & Koubida, S. (2019). Understanding the fragmented demand for transportation: small traditional retailers in emerging markets.
Brown, J. R., & Guiffrida, A. L. (2017). Stochastic modeling of the last mile problem for delivery fleet planning last mile algorithm comparison view project stochastic modeling of the last mile problem view project.
Brown, J. R., Bushuev, M. A., & Guiffrida, A. L. (2021). “Distance metrics matter: analysing optimisation algorithms for the last mile problem.
Cajamarca, I. (2022, Junio 11).
Calisti, R., Proietti, P., & Marchini, A. (2019). Promoting sustainable food consumption: an agent-based model about outcomes of small shop openings.
Colombia, Departamento Administrativo Nacional de Estadística – DANE. (2022).
Constanza Gómez, G. (2005, Noviembre 25).
Cummins, S., Smith, D. M., Aitken, Z., Dawson, J., Marshall, D., Sparks, L., & Anderson, A. S. (2010). Neighbourhood deprivation and the price and availability of fruit and vegetables in Scotland.
Escamilla, R., Fransoo, J. C., & Tang, C. S. (2021). improving agility, adaptability, alignment, accessibility, and affordability in nanostore supply chains.
Fenalco. (2022).
Food and Agriculture Organization – FAO, International Fund for Agricultural Development – IFAD, United Nations Children’s Fund – UNICEF, World Food Programme – WFP, World Health Organization – WHO. (2022).
Fransoo, J. C. (2021).
Fransoo, J. C., Blanco, E., & Mejía-Argueta, C. (2017).
Freitas, E., & Domingues, N. (2013). The economy of distribution centers: the case of large retail networks in Brazil.
Ge, J., Honhon, D., Fransoo, J. C., & Zhao, L. (2021). Supplying to mom and pop: traditional retail channel selection in megacities.
Ghosh-Dastidar, B., Cohen, D., Hunter, G., Zenk, S. N., Huang, C., Beckman, R., & Dubowitz, T. (2014). Distance to store, food prices, and obesity in urban food deserts.
Gutiérrez-Rubiano, D. F., Hincapié-Montes, J. A., & León-Villalba, A. F. (2019). Collaborative distribution: strategies to generate efficiencies in urban distribution: results of two pilot tests in the city of Bogotá
Kin, B. (2020). Less fragmentation and more sustainability: how to supply nanostores in urban areas more efficiently?
Kin, B., Ambra, T., Verlinde, S., & Macharis, C. (2018). Tackling fragmented last mile deliveries to nanostores by utilizing spare transportation capacity: a simulation study.
Larrea-Gallegos, G., Benetto, E., Marvuglia, A., & Navarrete Gutiérrez, T. (2022). Sustainability, resilience and complexity in supply networks: a literature review and a proposal for an integrated agent-based approach.
Levi, R., Paulson, E., & Perakis, G. (2020).
Macal, C. M., & North, M. J. (2007). Agent-based modeling and simulation: desktop ABMS. In
Mejía, G., & García-Díaz, C. (2018). Market-level effects of firm-level adaptation and intermediation in networked markets of fresh foods: a case study in Colombia.
Mejia Argueta, C., Udenio, M., Mutlu, N. R., & Fransoo, J. C. (2019a).
Mejía-Argueta, C., Benitez-Perez, V., Salinas-Benitez, S., Brives, O., Fransoo, J. C., Salinas-Navarro, D., & Rangel, G. (2019b, August 15).
Mora-Quiñones, C. A., Cárdenas-Barrón, L. E., Velázquez-Martínez, J. C., & Gámez-Pérez, K. M. (2021). The coexistence of nanostores within the retail landscape: a spatial statistical study for Mexico City.
Moyano, M., Castillo, J., Chong, M., & Mejía, C. (2022). Comparison of nanostore supply chain strategies in urban areas: the case of Ica, Peru.
Nogueira, L. R., Fontanelli, M., Aguiar, B. S., Failla, M. A., Florindo, A. A., Barrozo, L. V., Goldbaum, M., Cesar, C., Alves, M., & Fisberg, R. (2018). Access to street markets and consumption of fruits and vegetables by adolescents living in São Paulo, Brazil
Paswan, A., Santarriaga Pineda, M. D., & Soto Ramirez, F. C. (2010). Small versus large retail stores in an emerging market—Mexico.
Rios Monroy, J. (2020).
Ritter, F. E., Schoelles, M. J., Quigley, K. S., & Klein, L. C. (2011). Determining the Number of Simulation Runs: Treating Simulations as Theories by Not Sampling Their Behavior. In L. Rothrock, S. Narayanan (Eds.), Human-in-the-Loop Simulations (pp. 97-116). London: Springer.
Sabana Centro Cómovamos. (2017).
Sabana Centro Cómovamos. (2021).
Salinas-Navarro, D. E., Pacheco-Velazquez, E., Silva-Ovando, A. C., Mejia-Argueta, C., & Chong, M. (2024). Educational innovation in supply chain management and logistics for active learning in Latin America.
Shaaban, M., Voglhuber-Slavinsky, A., Dönitz, E., Macpherson, J., Paul, C., Mouratiadou, I., Helming, K., & Piorr, A. (2023). Understanding the future and evolution of agri-food systems: a combination of qualitative scenarios with agent-based modelling.
Shoukat, A., & Moghadas, S. (2020). Agent-based modelling: an overview with application to disease dynamics.
Silva-Ovando, A. C., Granados-Rivera, D., Mejía, G., Mejía-Argueta, C., & Jarrín, J. (2021). Spatial analysis of fresh food retailers in Sabana Centro, Colombia. In L. Rabelo, E. Gutierrez-Franco, A. Sarmiento & C. Mejía-Argueta (Eds.), Engineering analytics (pp. 235-253). Boca Raton: CRC Press.
Sopha, B. M., Sri Asih, A. M., Pradana, F. D., Gunawan, H. E., & Karuniawati, Y. (2016). Urban distribution center location: combination of spatial analysis and multi-objective mixed-integer linear programming.
Sturley, C., Newing, A., & Heppenstall, A. (2018). Evaluating the potential of agent-based modelling to capture consumer grocery retail store choice behaviours.
Swinburn, B., Sacks, G., Vandevijvere, S., Kumanyika, S., Lobstein, T., Neal, B., Barquera, S., Friel, S., Kelly, B., Kumanyika, S., L’Abbé, M., Lee, A., Lobstein, T., Ma, J., MacMullan, J., Mohan, S., Monteiro, C., Neal, B., Rayner, M., Sanders, D., & Walker, C. (2013). What are ‘food environments’?
Torrens, P. M. (2023). Agent models of customer journeys on retail high streets.
Train, K. E. (2009).
United Nations. (2020).
van Voorn, G., Hengeveld, G., & Verhagen, J. (2020). An agent based model representation to assess resilience and efficiency of food supply chains.
Widener, M. J., Metcalf, S. S., & Bar-Yam, Y. (2012). Developing a mobile produce distribution system for low-income urban residents in food deserts.
Zhang, J., & Robinson, D. T. (2022). Investigating path dependence and spatial characteristics for retail success using location allocation and agent-based approaches.
Zissis, D., Aktas, E., & Bourlakis, M. (2018). Collaboration in urban distribution of online grocery orders.
Submitted date:
11/25/2023
Accepted date:
08/29/2024