Production
https://prod.org.br/article/doi/10.1590/0103-6513.20230040
Production
Research Article

Performance of a concurrent parallel production system through new operating curves of Six Sigma metrics

Tomás José Fontalvo Herrera; Ana Gabriela Banquez Maturana; Katherin Mendoza Villero

Downloads: 0
Views: 482

Abstract

Paper aims: This research establishes a method to evaluate a concurrent production system in parallel, through new operating curves of six sigma metrics.

Originality: Se proposes a novel method that provides criteria to monitor the performance of a production system in changing production conditions.

Research method: This research was approached from a logical positivist epistemological model, through a heuristic analysis and with a rational propositional approach to establish the characterization of the model, the evaluation metrics and propose the new operation curves.

Main findings: The results obtained show that as the sigma level increases in the global system (4.17), the level of defects per million opportunities decreases considerably and the performance increases at levels close to the main objective of Six Sigma, all this with a decrease of defects from 20.657 to 1.317, generating a high quality of 99.99% and achieving a good performance according to the established quality criteria.

Implications for theory and practice: This research provides a new tool where they articulate concepts of six sigma and operating curves to monitor a productive system, which allows in a practical way to determine the real capabilities in terms of quality performance of a system.

Keywords

Six sigma, Parallel production system, Quality, Performance

References

Aguilar, H., García-Villoria, A., & Pastor, R. (2020). A survey of the parallel assembly lines balancing problem. Computers & Operations Research, 124, 105061. http://dx.doi.org/10.1016/j.cor.2020.105061.

Antosz, K., Jasiulewicz-Kaczmarek, M., Waszkowski, R., & Machado, J. (2022). Application of Lean Six Sigma for sustainable maintenance: case study. IFAC-PapersOnLine, 55(19), 181-186. http://dx.doi.org/10.1016/j.ifacol.2022.09.204.

Banquez Maturana, A., & Fontalvo Herrera, T. (2023). Global performance evaluation based on multivariable statistical control of a public utility company. Pesquisa Operacional, 43, e270103. http://dx.doi.org/10.1590/0101-7438.2023.043.00270103.

Fernandes, R., Rocha, T., Coelho, J., & Andrade, D. (2023). Development of a measurement instrument to evaluate integrated management systems and differences in perception: an approach to item response theory and the quality management process. Production, 33, e20220069. http://dx.doi.org/10.1590/0103-6513.20220069.

Fontalvo Echavez, O., Fontalvo Herrera, T., & Herrera, R. (2021). Evaluation method of the sigma level multidimensional capacity of the service dimensions in a call center of a telephone company. International Journal of Productivity and Quality Management., 34(3), 319-335. http://dx.doi.org/10.1504/IJPQM.2021.119787.

Fontalvo Herrera, T., & Banquez Maturana, A. (2023). Comparative analysis of multivariate capacity indicators for serial and parallel systems. International Journal of Six Sigma and Competitive Advantage., 14(4), 10058903. http://dx.doi.org/10.1504/IJSSCA.2023.10058903.

Fontalvo Herrera, T., De la Hoz, E., & Fontalvo, O. (2022a). Six sigma method to assess the quality of the service in a gas utility company. International Journal of Process Management and Benchmarking., 12(2), 220-232. http://dx.doi.org/10.1504/IJPMB.2022.121628.

Fontalvo Herrera, T., Herrera, R., & Zambrano, J. (2022b). Three-phase method to assess the logistics service using Six Sigma metrics, Hotelling ́s T- square control chart and a principal component capacity indicator. International Journal of Productivity and Quality Management, 35(1), 17-39. http://dx.doi.org/10.1504/IJPQM.2022.120720.

Gupta, S., Modgil, S., & Gunasekaran, A. (2019). Big data in lean six sigma: a review and further research directions. International Journal of Production Research, 58(3), 947-969. http://dx.doi.org/10.1080/00207543.2019.1598599.

Hadipour, H., Amiri, M., & Sharifi, M. (2019). Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems. Reliability Engineering & System Safety, 192(1), 1-18. http://dx.doi.org/10.1016/j.ress.2018.01.007.

Izquierdo Espinoza, J. (2021). La calidad de servicio en la administración pública. Horizonte Empresarial, 8(1), 425-437. http://dx.doi.org/10.26495/rce.v8i1.1648.

Kansara, S. (2020). Modeling the water supply service quality: a case study of the municipal corporation. International Journal of Productivity and Quality Management, 29(1), 94-108. http://dx.doi.org/10.1504/IJPQM.2020.104525.

Kumar, A., Varaprasad, G., & Padhy, R. (2020). A systematic review of empirical studies pertaining to Lean, Six Sigma and Lean Six Sigma quality improvement methodologies in pediatrics. International Journal of Business Excellence, 23(1), 18-32. http://dx.doi.org/10.1504/IJBEX.2021.111936.

Kumar, S., & Khanduja, D. (2021). Cost of poor quality in auto sector: an exploration with Six-Sigma. International Journal of Six Sigma and Competitive Advantage, 13(1-3), 271-288. http://dx.doi.org/10.1504/IJSSCA.2021.120249.

Lokesh, K., Samanta, A. K., & Varaprasad, G. (2020). Reducing the turnaround time of laboratory samples by using Lean Six Sigma methodology in a tertiary-care hospital in India. In 2020 International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-6). New York: IEEE. http://dx.doi.org/10.1109/ICSCAN49426.2020.9262385.

Martin, J., Elg, M., & Gremyr, I. (2020). The many meanings of quality: towards a definition in support of sustainable operations. Total Quality Management & Business Excellence, 1-14. In press. http://dx.doi.org/10.1080/14783363.2020.1844564.

Martin, J., Elg, M., Gremyr, I., & Wallo, A. (2021). Towards a quality management competence framework: exploring needed competencies in quality management. Total Quality Management & Business Excellence, 32(3-4), 359-378. http://dx.doi.org/10.1080/14783363.2019.1576516.

Mishra, Y., Sharma, M. K., Yadav, V., Meena, M. L., & Dangayach, G. S. (2021). Lean Six Sigma implementation in an Indian manufacturing organisation: a case study. International Journal of Six Sigma and Competitive Advantage, 13(1-3), 76-100. http://dx.doi.org/10.1504/IJSSCA.2021.120228.

Mronga, D., Kumar, S., & Kirchner, F. (2022). Whole-body control of series-parallel hybrid robots. In 2022 International Conference on Robotics and Automation (ICRA) (pp. 228-234). New York: IEEE. http://dx.doi.org/10.1109/ICRA46639.2022.9811616.

Pacheco, D. (2014). Teoria das Restrições, Lean Manufacturing e Seis Sigma: limites e possibilidades de integração. Production, 24(4), 940-956. http://dx.doi.org/10.1590/S0103-65132014005000002.

Patel, A. S., & Patel, K. M. (2021). Critical review of literature on Lean Six Sigma methodology. International Journal of Lean Six Sigma, 12(3), 627-674. http://dx.doi.org/10.1108/IJLSS-04-2020-0043.

Qayyum, S., Ullah, F., Al-Turjman, F., & Mojtahedi, M. (2021). Managing smart cities through six sigma DMADICV method: A review-based conceptual framework. Sustainable Cities and Society, 72, 103022. http://dx.doi.org/10.1016/j.scs.2021.103022.

Redman, T., & Hoerl, R. (2023). Data quality and statistics: perfect together? Quality Engineering, 35(1), 152-159. http://dx.doi.org/10.1080/08982112.2022.2103432.

Rojas-Martínez, C., Niebles-Nuñez, W., Pacheco-Ruíz, C., & Hernández-Palma, H. G. (2020). Calidad de servicio como elemento clave de la responsabilidad social en pequeñas y medianas empresas. Información Tecnológica, 31(4), 221-232. http://dx.doi.org/10.4067/S0718-07642020000400221.

Russell, A., & Taghipour, S. (2020). Multi-parallel work centers scheduling optimization with shared or dedicated resources in low-volume low-variety production systems. Applied Mathematical Modelling, 80, 472-505. http://dx.doi.org/10.1016/j.apm.2019.11.047.

Sharma, M., Sahni, S., & Sharma, S. (2019a). Reduction of defects in the lapping process of the silicon wafer manufacturing: the Six Sigma application. Engineering Management in Production and Services, 11(2), 87-105. http://dx.doi.org/10.2478/emj-2019-0013.

Sharma, P., Gupta, A., Malik, S. C., & Jha, P. C. (2019b). Quality improvement in manufacturing process through six sigma: a case study of Indian MSME firm. Yugoslav Journal of Operations Research, 29(4), 519-537. http://dx.doi.org/10.2298/YJOR190115007S.

Simanová, Ľ., Sujová, A., & Gejdoš, P. (2019). Improving the performance and quality of processes by applying and implementing Six Sigma methodology in furniture manufacturing process. Drvna Industrija, 70(2), 193-202. http://dx.doi.org/10.5552/drvind.2019.1768.

Singh, B. J., & Mahendru, S. (2021). Enhancing the capability of a PVC pipe extrusion process through the Six Sigma’s strategic approach. International Journal of Six Sigma and Competitive Advantage, 13(1-3), 311. http://dx.doi.org/10.1504/IJSSCA.2021.120220.

Skalli, D., Charkaoui, A., & Cherrafi, A. (2022). Assessing interactions between Lean Six-Sigma, Circular Economy and industry 4.0: toward an integrated perspective. IFAC-PapersOnLine, 55(10), 3112-3117. http://dx.doi.org/10.1016/j.ifacol.2022.10.207.

Sodhi, H. S. (2023). A comparative analysis of lean manufacturing, Six Sigma and Lean Six Sigma for their application in manufacturing organisations. International Journal of Process Management and Benchmarking, 13(1), 127. http://dx.doi.org/10.1504/IJPMB.2023.127902.

Terán Ayay, N., Gonzáles Vásquez, J., Ramirez-López, R., & Palomino Alvarado, G. P. (2021). Calidad de servicio en las organizaciones de Latinoamérica. Ciencia Latina Revista Científica Multidisciplinar, 5(1), 1184-1197. http://dx.doi.org/10.37811/cl_rcm.v5i1.320.
 


Submitted date:
06/14/2023

Accepted date:
01/25/2024

65e72f45a953956dcd0fd994 production Articles
Links & Downloads

Production

Share this page
Page Sections