Production
https://prod.org.br/article/doi/10.1590/0103-6513.20230027
Production
Research Article

A multinomial logistic regression model for public transportation use in a medium-sized Brazilian city

Marianna Lucinda de Oliveira; Josiane Palma Lima

Downloads: 0
Views: 390

Abstract

Paper aims: This paper addresses the influence of socioeconomic, quality, built environment, and safety variables on the demand for public transportation service.

Originality: This study covers a differentiated and little explored analysis in the literature on the frequency of use of public transport, using different exploratory variables and characteristics of the urban environment.

Research method: A sample of 274 bus users was obtained and the multinomial logistic regression method was performed to analyze how different variables impact frequency of use public transportation.

Main findings: The use of public transportation to work and study, transportation vouchers, distance traveled to central business and accessibility were strongly associated with more frequency of public transportation use. Owning a vehicle, and dissatisfaction with fare and bus schedules led to less frequent use.

Implications for theory and practice: This study corroborate with literature, where the public transportation is not the main mode of transportation due: private vehicle ownership; dissatisfaction with the public transportation; very low household income; no tariff subsidy; and difficulties in accessing bus stops. In practice, it can aid public transport providers to promote strategies to increase demand and improve service. It also advises government bodies on encouraging sustainable mobility, bringing benefits to society.

Keywords

Sustainability, Users’ satisfaction, Public transport service, Demand promotion strategies, Increased frequency of use

References

Aljoufie, M. (2014). Spatial analysis of the potential demand for public transport in the city of Jeddah, Saudi Arabia. Urban Transport XX, 138, 113-123. http://dx.doi.org/10.2495/UT140101.

Arana, P., Cabezudo, S., & Peñalba, M. (2014). Influence of weather conditions on transit ridership: a statistical study using data from Smartcards. Transportation Research Part A, Policy and Practice, 59, 1-12. http://dx.doi.org/10.1016/j.tra.2013.10.019.

Associação Nacional das Empresas de Transportes Urbanos – NTU. (2021). Yearbook 2020-2021 (486 p.). Brasília: NTU. Retrieved in 2023, April 10, from https://www.ntu.org.br/novo/upload/Publicacao/Pub637677328510412847.pdf.

Associação Nacional de Transportes Públicos – ANTP. (2020). Sistema de Informações da Mobilidade Urbana da Associação Nacional de Transportes Público - Simob/ANTP. Relatório geral 2017. São Paulo: ANTP. Retrieved in 2023, April 10, from http://files.antp.org.br/simob/sistema-de-informacao-de-mobilidade-urbana-da-antp--2017.pdf

Badoe, D. A., & Yendeti, M. K. (2007). Impact of transit-pass ownership on daily number of trips made by urban public transit. Journal of Urban Planning and Development, 133(4), 242-249. http://dx.doi.org/10.1061/(ASCE)0733-9488(2007)133:4(242).

Barabino, B., Cabras, N. A., Conversano, C., & Olivo, A. (2020). An Integrated Approach to Select Key Quality Indicators in Transit Services. Social Indicators Research, 149(3), 1045-1080. http://dx.doi.org/10.1007/s11205-020-02284-0.

Barabino, B., Deiana, E., & Mozzoni, S. (2013). The quality of public transport service: the 13816 standard and a methodological approach to an Italian case. Ingegneria Ferroviaria, 68(5), 475-499.

Barcelos, M., Lindau, L. A., Pereira, B. M., Danilevicz, Â. D. M. F., & Ten Caten, C. S. (2017). Inferring the importance of public transport attributes from user satisfaction. Transports, 25, 36-48. http://dx.doi.org/10.14295/transportes.v25i3.1336.

Birago, D., Mensahb, S. O., & Sharma, S. (2017). Level of Service Delivery of Public Transport and Mode Choice in Accra, Ghana. Transportation Research Part F: Traffic Psychology and Behaviour, 46, 284-300. http://dx.doi.org/10.1016/j.trf.2016.09.033.

Bocker, L., Van Amen, P., & Helbich, M. (2017). Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands. Transportation, 44(4), 831-852. http://dx.doi.org/10.1007/s11116-016-9680-z.

Brasil. (2012, January 4). Lei nº 12.587, de 3 de Janeiro de 2012. Institui as diretrizes da Política Nacional de Mobilidade Urbana; revoga dispositivos dos Decretos-Leis nºs 3.326, de 3 de junho de 1941, e 5.405, de 13 de abril de 1943, da Consolidação das Leis do Trabalho (CLT), aprovada pelo Decreto-Lei nº 5.452, de 1º de maio de 1943, e das Leis nºs 5.917, de 10 de setembro de 1973, e 6.261, de 14 de novembro de 1975; e dá outras providências. Diário Oficial da República Federativa do Brasil.

Brunoro, C. M., Sznelwar, L. I., Bolis, I., & Abrahao, J. (2015). The work of bus drivers and their contribution to excellence in public transportation. Production, 25(2), 323-335. http://dx.doi.org/10.1590/0103-6513.114012.

Cervero, R., Murakami, J., & Miller, M. (2010). Direct ridership model of bus rapid transit in Los Angeles County, California. Transportation Research Record: Journal of the Transportation Research Board, 2145(1), 1-7. http://dx.doi.org/10.3141/2145-01.

Chakrabarti, S. (2017). How can public transit get people out of their cars? An analysis of transit mode choice for commute trips in Los Angeles. Transport Policy, 54, 80-89. http://dx.doi.org/10.1016/j.tranpol.2016.11.005.

Chen, Y., Wang, Y., Wang, H., Hu, Z., & Hua, L. (2020). Controlling urban traffic-one of the useful methods to ensure safety in Wuhan based on COVID-19 outbreak. Safety Science, 131, 104938. http://dx.doi.org/10.1016/j.ssci.2020.104938. PMid:32834520.

Chiou, Y. C., Jou, R. C., & Yang, C. H. (2015). Factors affecting public transportation usage rate: Geographically weighted regression. Transportation Research Part A, Policy and Practice, 78, 161-177. http://dx.doi.org/10.1016/j.tra.2015.05.016.

Davies, N., Blazejewski, L., & Sherriff, G. (2020). The rise of micromobilities at tourism destinations. Journal of Tourism Futures, 6(3), 209-212. http://dx.doi.org/10.1108/JTF-10-2019-0113.

De Oña, J., & De Oña, R. (2015). Quality of service in public transport based on customer satisfaction surveys: A review and assessment of methodological approaches. Transportation Science, 49(3), 605-622. http://dx.doi.org/10.1287/trsc.2014.0544.

Delbosc, A., & Currie, G. (2012). Modelling the causes and impacts of personal safety perceptions on public transport ridership. Transport Policy, 24, 302-309. http://dx.doi.org/10.1016/j.tranpol.2012.09.009.

Diez-Mesa, F., De Oña, R., & De Oña, J. (2016). The effect of service attributes’ hierarchy on passengers’ segmentation. A light rail transit service case study. Transportation Research Procedia, 18, 234-241. http://dx.doi.org/10.1016/j.trpro.2016.12.032.

Ekinci, Y., Uray, N., Ülengin, F., & Duran, C. (2018). A segmentation based analysis for measuring customer satisfaction in maritime transportation. Transport, 33(1), 104-118. http://dx.doi.org/10.3846/16484142.2015.1079800.

Etminani-Ghasrodashti, R., Paydar, M., & Hamidi, S. (2018). University-related travel behavior: young adults’ decision-making in Iran. Sustainable Cities and Society, 43, 495-508. http://dx.doi.org/10.1016/j.scs.2018.09.011.

European Committee for Standardization. (2002). EN 13816:2002. Transportation – Logistics and services - Public Passenger transport – Service quality definition, targeting and measurement. Brussels: European Committee for Standardization. Retrieved in 2023, April 10, from https://cdn.standards.iteh.ai/samples/15341/6533ec29d27044fdb7b785f1dd5c36c7/SIST-EN-13816-2003.pdf.

Evans, J. R., & Mathur, A. (2018). The value of online surveys: a look back and a look ahead. Internet Research, 28(4), 854-887. http://dx.doi.org/10.1108/IntR-03-2018-0089.

Ewing, R., & Cervero, R. (2010). Travel and the Built environment: a meta-analysis. Journal of the American Planning Association, 76(3), 265-294. http://dx.doi.org/10.1080/01944361003766766.

Fávero, L. P. L., Belfiore, P. P., Silva, F. L., & Chan, B. L. (2009). Data analysis: multivariate modeling for decision making (646 p.). Rio de Janeiro: Elsevier.

Felix, R. R., Alves, V., & Lima, J. P. (2019). Land use management in the surroundings areas of the Sapucaí River in Itajubá-MG. urbe. Revista Brasileira de Gestão Urbana, 11, e20170180. https://doi.org/10.1590/2175-3369.011.001.ao02.

Ferraz, A. C. P., & Torres, I. G. E. (2004). Urban public transport. São Carlos: Rima.

Gascon, M., Marquet, O., Gràcia-Lavedan, E., Ambròs, A., Götschi, T., Denazelle, A., Luc Int, P., Gerike, R., Brand, C., Dons, E., Eriksson, U., Lacorossi, F., Ávila-Palència, L., Cole-Hunter, T., & Nieuwenhuisjen, M. J. (2020). What explains public transport use? Evidence from seven European cities. Transport Policy, 99, 362-374. http://dx.doi.org/10.1016/j.tranpol.2020.08.009.

Guirao, B., García-Pastor, A., & López-Lambas, M. E. (2016). The importance of service quality attributes in public transportation: Narrowing the gap between scientific research and practitioners’ needs. Transport Policy, 49, 68-77. http://dx.doi.org/10.1016/j.tranpol.2016.04.003.

Hamid, H. A., Wah, Y. B., Xie, X., & Huat, O. S. (2017). Investigating the power of goodness-of-fit tests for multinomial logistic regression. Communications in Statistics. Simulation and Computation, 47(4), 1039-1055. http://dx.doi.org/10.1080/03610918.2017.1303727.

Han, Y., Li, W., Wei, S., & Zhang, T. (2018). Research on Passenger’s travel mode choice behavior waiting at bus station based on SEM-logit integration Model. Sustainability (Basel), 10(6), 1996. http://dx.doi.org/10.3390/su10061996.

Haslauer, E., Delmelle, E. C., Keul, A., Blaschke, T., & Prinz, T. (2014). Comparing subjective and objective quality of life criteria: a case study of green space and public transport in Vienna, Austria. Social Indicators Research, 124(3), 911-927. http://dx.doi.org/10.1007/s11205-014-0810-8.

He, S. Y., & Thøgersen, J. (2017). The impact of attitudes and perceptions on travel mode choice and car ownership in a Chinese megacity: The case of Guangzhou. Research in Transportation Economics, 62, 57-67. http://dx.doi.org/10.1016/j.retrec.2017.03.004.

Hosmer, D. W., & Lemeshow, S. (2013). Applied logistic regression. New York: John Wiley & Sons. http://dx.doi.org/10.1002/9781118548387.

Instituto Brasileiro de Geografia e Estatistica – IBGE. (2010). Censo demográfico 2010. Características da população e dos domicílios. Resultados do universo. Rio de Janeiro: IBGE. Retrieved in 2023, April 10, from https://biblioteca.ibge.gov.br/visualizacao/periodicos/93/cd_2010_caracteristicas_populacao_domicilios.pdf

Instituto Brasileiro de Geografia e Estatistica – IBGE. (2022). Information about cities. Rio de Janeiro: IBGE. Retrieved in 2023, April 10, from https://cidades.ibge.gov.br/brasil/mg/itajuba/panorama

Instituto de Pesquisa Econômica Aplicada – IPEA. (2013). Tarifação e financiamento do transporte público urbano (Nota técnica, No. 2). Brasília: IPEA. Retrieved in 2023, April 10, from http://repositorio.ipea.gov.br/bitstream/11058/1365/1/Nota_Tecnica_Tarifa%C3%A7%C3%A3o_e_financiamento_do_transporte_p%C3%BAblico_urbano.pdf

Kaeoruean, K., Phithakkitnukoon, S., Demissie, M. G., Kattan, L., & Ratti, C. (2020). Analysis of demand–supply gaps in public transit systems based on census and GTFS data: a case study of Calgary, Canada. Public Transport (Berlin), 12(3), 483-516. http://dx.doi.org/10.1007/s12469-020-00252-y.

Keyes, A. K. M., & Crawford-Brown, D. (2018). The changing influences on commuting mode choice in urban England under Peak Car: A discrete choice modelling approach. Transportation Research Part F: Traffic Psychology and Behaviour, 58, 167-176. http://dx.doi.org/10.1016/j.trf.2018.06.010.

Ko, J., Lee, S., & Byun, M. (2019). Exploring factors associated with commute mode choice: an application of city-level general social survey data. Transport Policy, 75, 36-46. http://dx.doi.org/10.1016/j.tranpol.2018.12.007.

Langford, M., Higgs, G., & Fry, R. (2012). Using floating catchment analysis (FCA) techniques to examine intra-urban variations in accessibility to public transport opportunities: the example of Cardiff, Wales. Journal of Transport Geography, 25, 1-14. http://dx.doi.org/10.1016/j.jtrangeo.2012.06.014.

Lima, J. P., & Machado, M. H. (2019). Walking accessibility for individuals with reduced mobility: a Brazilian case study. Case Studies on Transport Policy, 7(2), 269-279. http://dx.doi.org/10.1016/j.cstp.2019.02.007.

Lima, J. P., Abitante, J. C., Dias Pons, N. A., & Senne, C. M. (2019). A spatial fuzzy multicriteria analysis of accessibility: a case study in Brazil. Sustainability (Basel), 11(12), 3407. http://dx.doi.org/10.3390/su11123407.

Liu, Y., Wang, S., & Xie, B. (2019). Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia. Transport Policy, 76, 78-89. http://dx.doi.org/10.1016/j.tranpol.2019.02.004.

Maraglino, V., Dell’olio, L., Borri, D., & Portilla, A. I. (2014). Methodology for a study of the perceived quality of public transport in Santander. Procedia: Social and Behavioral Sciences, 160, 499-508. http://dx.doi.org/10.1016/j.sbspro.2014.12.163.

Meng, L., Somenahalli, S., & Berry, S. (2020). Policy implementation of multi-modal (shared) mobility: review of a supply-demand value proposition canvas. Transport Reviews, 40(5), 670-684. http://dx.doi.org/10.1080/01441647.2020.1758237.

MiD. (2008). Mobility in Deutschland 2008. Bonn: Mobility in Deutschland (MiD). Retrieved in 2023, April 10, from https://www.mobilitaet-in-deutschland.de/archive/pdf/Mobility%20in%20Germany%202008_Projects%20Presentation.pdf.

National Academies of Sciences, Engineering, and Medicine. (2013). Transit Capacity and Quality of Service Manual. TCRP Report 165 (3rd ed., 685 p.). Washington: National Academies of Sciences, Engineering, and Medicine. http://dx.doi.org/10.17226/24766.

Nazem, M., Trépanier, M., & Morency, C. (2015). Revisiting the destination ranking procedure in development of an Intervening Opportunities Model for public transit trip distribution. Journal of Geographical Systems, 17(1), 61-81. http://dx.doi.org/10.1007/s10109-014-0203-1.

Oliveira, M. L., Mairinque, L. A., Santos, J. B., & Lima, J. P. (2022). Multivariate analysis of public transport quality: a case study in a medium-sized Brazilian city. Production, 32, e20210117. http://dx.doi.org/10.1590/0103-6513.20210117.

Pitombo, C. S., & Costa, A. S. G. (2015). Joint application of non-parametric and parametric models to predict modal choice. Journal of Transport Literature, 9(1), 30-34. http://dx.doi.org/10.1590/2238-1031.jtl.v9n1a6.

Ribeiro, K., Kobayashi, S., Beuthe, M., Gasca, J., Greene, D., Lee, D. S., Muromachi, Y., Newton, P. J., Plotkin, S., Sperling, D., Wit, R., Zhou, P. J., Davidson, O. R., Bosch, P. R., Dave, R., & Kingdom, U. (2007). Transport and its infrastructure, 324-385. In Intergovernmental Panel on Climate Change – IPCC. Climate Change 2007: mitigation. Cambridge: Cambridge University Press.

Saghapour, T., Moridpour, S., & Thompson, R. G. (2019). Estimating walking access levels incorporating distance thresholds of built environment features. International Journal of Sustainable Transportation, 13(1), 1-14. http://dx.doi.org/10.1080/15568318.2017.1380245.

Santos, J. B., & Lima, J. P. (2021). Quality of public transportation based on the multi-criteria approach and from perspective of user’s satisfaction level: a case study in Brazilian city. Case Studies on Transport Policy, 9(3), 1233-1244. http://dx.doi.org/10.1016/j.cstp.2021.05.015.

Sarkar, P. P., & Mallikarjuna, C. (2017). Effect of perception and attitudinal variables on mode choice behavior: A case study of Indian city, Agartala. Travel Behaviour & Society, 12, 108-114. http://dx.doi.org/10.1016/j.tbs.2017.04.003.

Sarker, R. I., Mailer, M., & Sikder, S. K. (2018). Walking to a public transport station: Empirical evidence on willingness and acceptance in Munich, Germany. Smart and Sustainable Built Environment, 9(1), 38-53. http://dx.doi.org/10.1108/SASBE-07-2017-0031.

Senne, C. M., Lima, J. P., & Favaretto, F. (2021). An index for the sustainability of integrated urban transport and logistics: The case study of São Paulo. Sustainability (Basel), 13(21), 12116. http://dx.doi.org/10.3390/su132112116.

Shrestha, B. P., Millonig, A., Hounsell, N. B., & McDonald, M. (2017). Review of Public Transport Needs of Older People in European Context. Journal of Population Ageing, 10(4), 343-361. http://dx.doi.org/10.1007/s12062-016-9168-9. PMid:29104702.

Silva, A. N. R., De Azevedo Filho, M. A. N., Macêdo, M. H., Sorratini, J. A., Da Silva, A. F., Lima, J. P., & Pinheiro, A. M. G. S. (2015). A comparative evolution of mobility conditions in selected cities of the Brazilian regions. Transport Policy, 37, 147-156. http://dx.doi.org/10.1016/j.tranpol.2014.10.017.

Soltanpour, A., Masbah, M., & Habibian, M. (2020). Customer satisfaction in urban rail: a study on transferability of structural equation models. Public Transport (Berlin), 12(1), 123-146. http://dx.doi.org/10.1007/s12469-019-00223-y.

Sun, Y., & Cui, Y. (2018). Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: case study of four Chinese autonomous municipalities. Transport Policy, 66, 116-126. http://dx.doi.org/10.1016/j.tranpol.2018.02.006.

Tembe, A., Nakamura, F., Tanaka, S., Ariyoshi, R., & Miura, S. (2019). The demand for public buses in sub-Saharan African cities: case studies from Maputo and Nairobi. IATSS Research, 43(2), 122-130. http://dx.doi.org/10.1016/j.iatssr.2018.10.003.

Thao, V. T., & Ohnmacht, T. (2019). The impact of the built environment on travel behavior: the Swiss experience based on two National Travel Surveys. Research in Transportation Business & Management, 36, 100386. http://dx.doi.org/10.1016/j.rtbm.2019.100386.

Trimet. (2010). Bus Stops Guidelines. Final report. Retrieved in 2023, April 10, from https://nacto.org/docs/usdg/bus_stop_guidelines_trimet.pdf

Truong, L. T., & Somenahalli, S. V. C. (2015). Exploring frequency of public transport use among older adults: a study in Adelaide, Australia. Travel Behaviour & Society, 2(3), 148-155. http://dx.doi.org/10.1016/j.tbs.2014.12.004.

Verma, M., Rodeja, N., Manoj, M., & Verma, A. (2020). Young women’s perception of safety in public buses : a study of two Indian cities (Ahmedabad and Bangalore). Transportation Research Procedia, 48, 3254-3263. http://dx.doi.org/10.1016/j.trpro.2020.08.151.

Vij, A., Carrel, A., & Walker, J. L. (2013). Incorporating the influence of latent modal preferences on travel mode choice behavior. Transportation Research Part A, Policy and Practice, 54, 164-178. http://dx.doi.org/10.1016/j.tra.2013.07.008.

Vittinghoff, E., & McCulloch, C. E. (2007). Relaxing the rule of ten events per variable in logistic and cox regression. American Journal of Epidemiology, 165(6), 710-718. http://dx.doi.org/10.1093/aje/kwk052. PMid:17182981.

Wang, D., & Zhou, M. (2017). The built environment and travel behavior in urban China: a literature review. Transportation Research Part D, Transport and Environment, 52, 574-585. http://dx.doi.org/10.1016/j.trd.2016.10.031.

Wells, K., & Thill, J. C. (2012). Do transit-dependent neighbourhoods receive inferior bus access? A neighbourhood analysis in four US cities. Journal of Urban Affairs, 34(1), 43-63. http://dx.doi.org/10.1111/j.1467-9906.2011.00575.x.

Weng, J., Di, X., Wang, C., Wang, J., & Mao, L. (2018). A bus service evaluation method from passenger’s perspective based on satisfaction surveys: a case study of Beijing, China. Sustainability (Basel), 10(8), 1-15. http://dx.doi.org/10.3390/su10082723.

Yang, L., & Wang, Y. (2018). Commuting mode choice behaviour study and policy suggestions for low-carbon. Tehnicki Vjesnik (Strojarski Fakultet), 25(4), 1169-1173. http://dx.doi.org/10.17559/TV-20160802061737.

Yang, Y., Wang, C., Liu, W., & Zhou, P. (2018). Understanding the determinants of travel mode choice of residents and its carbon mitigation potential. Energy Policy, 115, 486-493. http://dx.doi.org/10.1016/j.enpol.2018.01.033.

Yu, L., Xie, B., & Chan, E. (2018). How does the built environment influence public transit choice in urban villages in China? Sustainability (Basel), 11(1), 148. http://dx.doi.org/10.3390/su11010148.

Zailani, S., Iranmanesh, M., Ariffin, T., & Chan, T. (2016). Is the intention to use public transport for different travel purposes determined by different factors? Transportation Research Part D, Transport and Environment, 49, 18-24. http://dx.doi.org/10.1016/j.trd.2016.08.038.

Zuo, T., Wei, H., & Chen, N. (2020). Promote transit via hardening first-and-last-mile accessibility: learned from modeling commuters’ transit use. Transportation Research Part D, Transport and Environment, 86, 102446. http://dx.doi.org/10.1016/j.trd.2020.102446.
 


Submitted date:
04/10/2023

Accepted date:
09/11/2023

654b6c0fa9539512fb1c1bc4 production Articles
Links & Downloads

Production

Share this page
Page Sections