Production
https://prod.org.br/article/doi/10.1590/0103-6513.20230023
Production
Research Article

Analysis of a support method for offering delivery promises in environments managed by S-DBR system

Isidoro Rays Filho; Fernando Bernardi de Souza; Lucas Martins Ikeziri

Downloads: 0
Views: 437

Abstract

Paper aims: The objective of this paper is to investigate the effectiveness of a method, here denominated the due date promise by slack time rule (DDPSTR), to evaluate its feasibility and effectiveness for accepting urgent orders in make-to-order (MTO) environments managed by the Simplified Drum-Buffer-Rope (S-DBR) system.

Originality: Evaluating alternative methods for dealing with urgent orders in MTO environments managed and controlled by the S-DBR system is a subject that has received little attention from academia. This study contributes to the field of knowledge by identifying and comparing three alternatives.

Research method: To evaluate its feasibility and effectiveness, the DDPSTR was compared with variations of a method based on prior reserve capacity when dealing with regular and urgent orders. Computer simulation was used to model a theoretical production line that emulated the S-DBR system in different scenarios, using average delay and percentage of late orders as performance indicators.

Main findings: The DDPSTR method achieved optimal results for both indicators, enabling reliable delivery dates and, at the same time, flexibility in accepting urgent orders.

Implications for theory and practice: This work has verified the effectiveness of the DDPSTR method as a means of dealing with urgent orders without compromising the reliability of previously promised order deadlines. It has additionally proposed the means by which future research can evaluate adaptations, such as offering the shortest feasible delivery times to customers when those initially requested by them prove unworkable.

Keywords

Production planning and control, Theory of Constraints, Make to order, Simulation

References

Avdeeva, M., Uzun, O., & Borodkina, Y. (2020). Simulation of the evacuation process at various economic facilities using the Anylogic software product. E3S Web of Conferences, 175, 11031. http://dx.doi.org/10.1051/e3sconf/202017511031.

Banks, J., Carson Ii, J. S., Nelson, B. L., & Nicol, D. M. (2004). Discrete-event system simulation. New Jersey: Prentice Hall.

Bertrand, J. W. M., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations & Production Management, 22(2), 241-264. http://dx.doi.org/10.1108/01443570210414338.

Borges, G. A., Tortorella, G. L., Martínez, F., & Thurer, M. (2020). Simulation-based analysis of lean practices implementation on the supply chain of a public hospital. Production, 30, e20190131. http://dx.doi.org/10.1590/0103-6513.20190131.

Buestán Benavides, M., & Van Landeghem, H. (2015). Implementation of S-DBR in four manufacturing SMEs: a research case study. Production Planning and Control, 26(13), 1110-1127. http://dx.doi.org/10.1080/09537287.2015.1015060.

Castro, R. F., Godinho-Filho, M., & Tavares-Neto, R. F. (2022). Dispatching method based on particle swarm optimization for make-to-availability. Journal of Intelligent Manufacturing, 33(4), 1021-1030. http://dx.doi.org/10.1007/s10845-020-01707-6.

Chang, Y. C., & Huang, W. T. (2014). An enhanced model for SDBR in a random reentrant flow shop environment. International Journal of Production Research, 52(6), 1808-1826. http://dx.doi.org/10.1080/00207543.2013.848491.

Chasanah, F., & Sakakibara, H. (2022). Implication of mutual assistance evacuation model to reduce the volcanic risk for vulnerable society: insight from Mount Merapi, Indonesia. Sustainability, 14(13), 8110. http://dx.doi.org/10.3390/su14138110.

Costa, F., Kundu, K., Rossini, M., & Portioli-Staudacher, A. (2023). Comparative study of bottleneck-based release models and load-based ones in a hybrid MTO-MTS flow shop: an assessment by simulation. Operations Management Research, 16(1), 33-48. http://dx.doi.org/10.1007/s12063-022-00276-6.

Cox III, J. F., Boyd, L. H., Sullivan, T. T., Reid, R. A., & Cartier, B. (2012). The theory of constraints international certification organization dictionary. New York, NY: McGraw-Hill.

Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through simulation methods. Academy of Management Review, 32(2), 480-499. http://dx.doi.org/10.5465/amr.2007.24351453.

Diglio, A., Peiró, J., Piccolo, C., & Saldanha-da-Gama, F. (2021). Solutions for districting problems with chance-constrained balancing requirements. Omega, 103, 102430. http://dx.doi.org/10.1016/j.omega.2021.102430.

Ghalehkhondabi, I., & Suer, G. (2018). Production line performance analysis within a MTS/MTO manufacturing framework: a queueing theory approach. Production, 28, e20180024. http://dx.doi.org/10.1590/0103-6513.20180024.

Girotti, L. J., & Mesquita, M. A. D. (2015). Simulação e estudos de caso no ensino de planejamento e controle da produção: um survey com professores da engenharia de produção. Production, 26(1), 176-189. http://dx.doi.org/10.1590/0103-6513.145013.

Goldratt, E. M. (2009). Standing on the shoulders of giants: production concepts versus production applications. The Hitachi Tool Engineering example. Gestão & Produção, 16(3), 333-343. http://dx.doi.org/10.1590/S0104-530X2009000300002.

Gonzalez-Neira, E. M., Montoya-Torres, J. R., & Jimenez, J. F. (2021). A multicriteria simheuristic approach for solving a stochastic permutation flow shop scheduling problem. Algorithms, 14(7), 210. http://dx.doi.org/10.3390/a14070210.

Govoni, H., Souza, F. B. D., Castro, R. F., Rodrigues, J. D. S., & Pires, S. R. I. (2021). Analysis of production resources improvement strategies in make-to-stock environments managed by the simplified drum-buffer-rope system. Gestão & Produção, 28(4), e55. http://dx.doi.org/10.1590/1806-9649-2021v28e55.

Hales, D. N., & Chakravorty, S. S. (2016). Creating high reliability organizations using mindfulness. Journal of Business Research, 69(8), 2873-2881. http://dx.doi.org/10.1016/j.jbusres.2015.12.056.

Hopp, W. J., & Spearman, M. L. (2011). Factory physics. Long Grove: Waveland Press.

Ikeziri, L. M., Souza, F. B. D., Gupta, M. C., & Fiorini, P. C. (2019). Theory of constraints: review and bibliometric analysis. International Journal of Production Research, 57(15-16), 5068-5102. http://dx.doi.org/10.1080/00207543.2018.1518602.

Ikeziri, L. M., Souza, F. B., Meyer, A. S., & Gupta, M. C. (2023). Pulling the distribution in supply chains: simulation and analysis of Dynamic Buffer Management approach. International Journal of Systems Science: Operations & Logistics, 10(1), 1981480.

Kingsman, B., Hendry, L., Mercer, A., & Souza, A. (1996). Responding to customer enquiries in make-to-order companies problems and solutions. International Journal of Production Economics, 46-47, 219-231. http://dx.doi.org/10.1016/0925-5273(95)00199-9.

Kulak, O., Cebi, S., & Kahraman, C. (2010). Applications of axiomatic design principles: a literature review. Expert Systems with Applications, 37(9), 6705-6717. http://dx.doi.org/10.1016/j.eswa.2010.03.061.

Lee, H., & Seo, D. W. (2016). Performance evaluation of WIP-controlled line production systems with constant processing times. Computers & Industrial Engineering, 94, 138-146. http://dx.doi.org/10.1016/j.cie.2016.02.006.

Lee, J. H., Chang, J. G., Tsai, C. H., & Li, R. K. (2010). Research on enhancement of TOC Simplified Drum-Buffer-Rope system using novel generic procedures. Expert Systems with Applications, 37(5), 3747-3754. http://dx.doi.org/10.1016/j.eswa.2009.11.049.

Millstein, M. A., & Martinich, J. S. (2014). Takt Time Grouping: implementing kanban-flow manufacturing in an unbalanced, high variation cycle-time process with moving constraints. International Journal of Production Research, 52(23), 6863-6877. http://dx.doi.org/10.1080/00207543.2014.910621.

Narita, V. T., Ikeziri, L. M., & Souza, F. B. (2021). Evaluation of dynamic buffer management for adjusting stock level: a simulation-based approach. Journal of Industrial and Production Engineering, 38(6), 452-465. http://dx.doi.org/10.1080/21681015.2021.1931493.

Ok, C., & Park, J. (2014). A conceptual approach for managing production in consideration of shifting electrical loads. Robotics and Computer-integrated Manufacturing, 30(5), 499-507. http://dx.doi.org/10.1016/j.rcim.2014.03.005.

Orue, A., Lizarralde, A., Amorrortu, I., & Apaolaza, U. (2021). Theory of constraints case study in the make to order environment. Journal of Industrial Engineering and Management, 14(1), 72-85. http://dx.doi.org/10.3926/jiem.3283.

Pacheco, D. A. D. J. (2014). Teoria das Restrições, Lean Manufacturing e Seis Sigma: limites e possibilidades de integração. Production, 24(4), 940-956. http://dx.doi.org/10.1590/S0103-65132014005000002.

Parsaei, Z., Nahavandi, N., & ElMekkawy, T. (2012). Buffer size determination for drum-buffer-rope controlled supply chain networks. International Journal of Agile Systems and Management, 5(2), 151-163. http://dx.doi.org/10.1504/IJASM.2012.046895.

Robinson, S. (2004). Simulation: the practice of model development and use. Chichester: Wiley.

Santos, R. F. D., & Alves, J. M. (2014). Proposta de um modelo de gestão integrada da cadeia de suprimentos: aplicação no segmento de eletrodomésticos. Production, 25(1), 125-142. http://dx.doi.org/10.1590/S0103-65132014005000013.

Schragenheim, E. (2006). Using SDBR in rapid response projects. Yehud: Goldratt Group.

Schragenheim, E. (2010). From DBR to simplified-DBR for make-to-order. In J. F. Cox III, C. Cirm & J. G. Schleier Junior (Eds.), Theory of constraints handbook (pp. 211-238). New York: McGraw-Hill Education.

Schragenheim, E., Dettmer, H. W., & Patterson, J. W. (2009). Supply chain management at warp speed: integrating the system from end to end. Boca Raton: Auerbach Publications. http://dx.doi.org/10.1201/9781420073362.

Souza, F. B. D. (2005). Do OPT à Teoria das Restrições: avanços e mitos. Production, 15(2), 184-197. http://dx.doi.org/10.1590/S0103-65132005000200005.

Souza, F. B. D., & Baptista, H. R. (2010). Proposta de avanço para o método Tambor-Pulmão-Corda Simplificado aplicado em ambientes de produção sob encomenda. Gestão & Produção, 17(4), 735-746. http://dx.doi.org/10.1590/S0104-530X2010000400008.

Souza, F. B. D., & Pires, S. R. I. (2014). Produzindo para disponibilidade: uma aplicação da Teoria das Restrições em ambientes de produção para estoque. Gestão & Produção, 21(1), 65-76. http://dx.doi.org/10.1590/S0104-530X2013005000007.

Srikanth, M. Y. (2010). DBR, Buffer management, and VATI flow classification. In J. F. Cox III, C. Cirm & J. G. Schleier Junior (Eds.), Theory of constraints handbook (pp. 175-210). New York: McGraw-Hill Education.

Stevenson, M., Hendry, L. C., & Kingsman, B. G. (2005). A review of production planning and control: the applicability of key concepts to the make-to-order industry. International Journal of Production Research, 43(5), 869-898. http://dx.doi.org/10.1080/0020754042000298520.

Suh, N. P., Cochran, D. S., & Lima, P. C. (1998). Manufacturing system design. CIRP Annals, 47(2), 627-639. http://dx.doi.org/10.1016/S0007-8506(07)63245-4.

Taylor, S. J. (2014). Agent-based modeling and simulation. Jakarta: Palgrave Macmillan. http://dx.doi.org/10.1057/9781137453648.

Telles, E. S., Lacerda, D. P., Morandi, M. I. W. M., & Piran, F. A. S. (2020). Drum-buffer-rope in an engineering-to-order system: an analysis of an aerospace manufacturer using data envelopment analysis (DEA). International Journal of Production Economics, 222, 107500. http://dx.doi.org/10.1016/j.ijpe.2019.09.021.

Telles, E. S., Lacerda, D. P., Morandi, M. I. W., Ellwanger, R., Souza, F. B., & Piran, F. S. (2022). Drum-Buffer-Rope in an engineering-to-order productive system: a case study in a Brazilian aerospace company. Journal of Manufacturing Technology Management, 33(6), 1190-1209. http://dx.doi.org/10.1108/JMTM-10-2021-0420.

Thürer, M., & Stevenson, M. (2018). On the beat of the drum: improving the flow shop performance of the Drum-Buffer-Rope scheduling mechanism. International Journal of Production Research, 56(9), 3294-3305. http://dx.doi.org/10.1080/00207543.2017.1401245.

Thürer, M., Fernandes, N. O., & Stevenson, M. (2022). Production planning and control in multi-stage assembly systems: an assessment of Kanban, MRP, OPT (DBR) and DDMRP by simulation. International Journal of Production Research, 60(3), 1036-1050. http://dx.doi.org/10.1080/00207543.2020.1849847.
 


Submitted date:
04/01/2023

Accepted date:
09/19/2023

654e39f0a9539511971ec1a3 production Articles
Links & Downloads

Production

Share this page
Page Sections