Digital transformation in maintenance: interoperability-based adequacy aiming smart legacy systems
André Luiz Alcântara Castilho Venâncio; Guilherme Louro Brezinski; Gabriel da Silva Serapião Leal; Eduardo de Freitas Rocha Loures; Fernando Deschamps
Abstract
Keywords
References
Alencar, L. H., Almeida, A. T., & Morais, D. C. (2010). A multicriteria group decision model aggregating the preferences of decision-makers based on electre methods.
Auvray, J. (2018).
Batlajery, B. V., Khadka, R., Saeidi, A. M., Jansen, S., & Hage, J. (2014).
Biahmou, A., Emmer, C., Pfouga, A., & Stjepandić, J. (2016).
Bokrantz, J., Skoogh, A., Berlin, C., & Stahre, J. (2017). Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030.
Boulton, B. C. (2019).
Brans, J.-P., & Mareschal, B. (2005). PROMETHEE Methods.
Brooke, C., & Ramage, M. (2001). Organisational scenarios and legacy systems.
CBI. (2017).
Chen, D., & Daclin, N. (2006). Framework for enterprise interoperability. In
Chen, D., Dassisti, M., & Elvesæter, B. (2007). Enterprise interoperability framework and knowledge corpus. In D. Chen, M. Dassisti, B. Elvesaeter, H. Panetto, N. Daclin, F. W. Jaekel, T. Knothe, A. Solberg, V. Anaya & R. Sanchis (Eds.),
Cimitile, A., Fasolino, A.R., & Lanubile, F. (2001). Legacy systems assessment to support decision making. In
Colombo, A. W., Karnouskos, S., Kaynak, O., Shi, Y., & Yin, S. (2017). Industrial cyberphysical systems: a backbone of the Fourth Industrial Revolution.
Crotty, J., & Horrocks, I. (2017). Managing legacy system costs: a case study of a meta-assessment model to identify solutions in a large financial services company.
Deloitte. (2018).
Deloitte. (2019).
Di Matteo, U., Pezzimenti, P., & Astiaso Garcia, D. (2016). Methodological proposal for optimal location of emergency operation centers through multi-criteria approach.
European Union Agency for Cybersecurity – ENISA. (2019).
Fontana, M. E., & Cavalcante, C. A. V. (2013). Electre tri method used to storage location assignment into categories.
Gudienė, N., Banaitis, A., Podvezko, V., & Banaitiene, N. (2014). Identification and evaluation of the critical success factors for construction projects in Lithuania: AHP approach.
Han, E. S., Goleman, D., Boyatzis, R., & McKee, A. (2017). Basic concepts of effectiveness.
Hashemi, H., Mousavi, S. M., Zavadskas, E. K., Chalekaee, A., & Turskis, Z. (2018). A new group decision model based on Grey-Intuitionistic Fuzzy-ELECTRE and VIKOR for contractor assessment problem.
Huawei. (2017).
Interactive and Reserved. (2018).
Jahedi, S., & Méndez, F. (2014). On the advantages and disadvantages of subjective measures.
Johnson, T., & Suhaib, S. (2009). Toward improved verification and certification of legacy systems.
Kabir, G., & Sumi, R. S. (2014). Integrating fuzzy analytic hierarchy process with PROMETHEE method for total quality management consultant selection.
Kaiser, G., Gross, P., Kc, G., Parekh, J., & Valetto, G. (2005).
Keeney, R. L., & Gregory, R. S. (2004). Selecting attributes to measure the achievement of objectives.
Knoll, D., Prüglmeier, M., & Reinhart, G. (2016). Predicting future inbound logistics processes using machine learning.
Kodali, R., Mishra, R. P., & Anand, G. (2009). Justification of world-class maintenance systems using analytic hierarchy constant sum method.
Lee, M. H., Yun, J. H. J., Pyka, A., Won, D. K., Kodama, F., Schiuma, G., Park, H. S., Jeon, J., Park, K. B., Jung, K. H., Yan, M.-R., Lee, S. Y., & Zhao, X. (2018). How to respond to the Fourth Industrial Revolution, or the second information technology revolution? Dynamic new combinations between technology, market, and society through open innovation.
Liao, Y., Rocha, E., Deschamps, F., Brezinski, G., & Venâncio, A. (2018). The impact of the fourth industrial revolution: a cross-country/region comparison.
Liere-Netheler, K., Packmohr, S., & Vogelsang, K. (2018). Drivers of digital transformation in manufacturing. In
Liu, K., Alderson, A., Sharp, B., Shah, H., & Dix, A. (1998).
Lopes, I., Senra, P., Vilarinho, S., Sá, V., Teixeira, C., Lopes, J., Alves, A., Oliveira, J. A., & Figueiredo, M. (2016). Requirements specification of a computerized maintenance management system: a case study.
Maeda, M., Sakurai, Y., Tamaki, T., & Nonaka, Y. (2017). Method for automatically recognizing various operation statuses of legacy machines.
Mahraz, M. I., Benabbou, L., & Berrado, A. (2019). A systematic literature review of digital transformation. In
McKinsey & Company. (2015).
McKinsey & Company. (2018).
Mergel, I., Edelmann, N., & Haug, N. (2019). Defining digital transformation: Results from expert interviews.
Morakanyane, R., Grace, A., & O’Reilly, P. (2017). Conceptualizing digital transformation in business organizations: a systematic review of literature. In
Mourtzis, D., Vlachou, E., Milas, N., & Xanthopoulos, N. (2016). A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring.
Naudet, Y., Latour, T., Guedria, W., & Chen, D. (2010). Towards a systemic formalisation of interoperability.
OMRON. (2018).
Panetto, H., Zdravkovic, M., Jardim-Goncalves, R., Romero, D., Cecil, J., & Mezgár, I. (2016). New perspectives for the future interoperable enterprise systems.
Pieper, R. (2011). Legacy machine monitoring using power signal analysis (pp. 1-8). In
Pini, M. (2019). Family management and Industry 4.0: different effects in different geographical areas? An analysis of the less developed regions in Italy.
Plattform Industrie 4.0. (2015).
Podgórski, D. (2015). Measuring operational performance of OSH management system: a demonstration of AHP-based selection of leading key performance indicators.
Presley, A., & Liles, D. H. (2015). The use of IDEF0 for the design and specification of methodologies. In
Qin, J., Liu, Y., & Grosvenor, R. (2016). A categorical framework of manufacturing for Industry 4.0 and beyond.
Ramage, M. (2000). Global perspectives on legacy systems. In P. Henderson (Ed.),
Ramos, L., Loures, E., Deschamps, F., & Venâncio, A. (2020). Systems evaluation methodology to attend the digital projects requirements for Industry 4.0.
Ransom, J., Somerville, I., & Warren, I. (1998). A method for assessing legacy systems for evolution. In
Renna, P. (2017). Allocation improvement policies to reduce process time based on workload evaluation in job shop manufacturing systems.
Renna, P., & Ambrico, M. (2019). The allocation of improvement programs in a flow shop for single and multi-products: a simulation assessment.
Roghanian, E., & Alipour, M. (2014). A fuzzy model for achieving lean attributes for competitive advantages development using AHP-QFD-PROMETHEE.
Romero, D., & Vernadat, F. (2016). Enterprise information systems state of the art: past, present and future trends.
Rosendahl, R., Schmidt, N. S., Lüder, A., & Ryashentseva, D. (2015). Industry 4.0 value networks in legacy systems. In
Roy, B. (1968). Classement et choix en présence de points de vue multiples.
Ruschel, E., Santos, E. A. P., & Loures, E. de F.R. (2017). Industrial maintenance decision-making: a systematic literature review.
Saaty, R. W. (1987). The analytic hierarchy process-what and how it is used.
Santos, K., Loures, E., Piechnicki, F., & Canciglieri, O. (2017). Opportunities assessment of product development process in Industry 4.0.
Schuster, C. H., Schuster, J. J., & Oliveira, A. S. (2014). Aplicação do diagrama de Mudge e QFD utilizando como exemplo a hierarquização dos requisitos para um carro voado.
Silva Serapião Leal, G., Guédria, W., & Panetto, H. (2019). An ontology for interoperability assessment: a systemic approach.
Sipsas, K., Alexopoulos, K., Xanthakis, V., & Chryssolouris, G. (2016). Collaborative maintenance in flow-line manufacturing environments: an Industry 4.0 approach.
Stjepić, A.-M., Ivančić, L., & Vugec, D. S. (2020). Mastering digital transformation through business process management: investigating alignments, goals, orchestration, and roles, journal of entrepreneurship.
Tedeschi, S., Rodrigues, D., Emmanouilidis, C., Erkoyuncu, J., Roy, R., & Starr, A. (2018). A cost estimation approach for IoT modular architectures implementation in legacy systems.
Temiz, I., & Calis, G. (2017). Selection of construction equipment by using multi-criteria decision making methods.
Trojan, F., & Morais, D. C. (2012). Using electre tri to support maintenance of water distribution networks.
Ullberg, J., Chen, D., & Johnson, P. (2009). Barriers to enterprise interoperability. In R. Poler, M. van Sinderen & R. Sanchis (Eds.),
Utiyama, M. H. R., Godinho Filho, M., & Oprime, P. C. (2021). An alternative for improving setup times and time between failures aiming at manufacturing lead time reduction.
Vaisnys, P., Contri, P., Rieg, C., & Bieth, M. (2006).
Vallhagen, J., Almgren, T., & Thörnblad, K. (2017). Advanced use of data as an enabler for adaptive production control using mathematical optimization: an application of Industry 4. 0 principles
Venâncio, A. L. A. C., Loures, E. F. R., Deschamps, F., Justus, A. S., Lumikoski, A. F., & Brezinski, G. L. (2022). Technology prioritization framework to adapt maintenance legacy systems for Industry 4.0 requirement: an interoperability approach.
Vernadat, F. B. (2010). Technical, semantic and organizational issues of enterprise interoperability and networking.
Vilarinho, S., Lopes, I., & Oliveira, J. A. (2017). Preventive maintenance decisions through maintenance optimization models: a case study.
Vinodh, S., Prasanna, M., & Hari Prakash, N. (2014). Integrated Fuzzy AHP-TOPSIS for selecting the best plastic recycling method: a case study.
Weichhart, G., Panetto, H., & Molina, A. (2021). Interoperability in the cyber-physical manufacturing enterprise.
Xu, M., David, J. M., & Kim, S. H. (2018). The fourth industrial revolution: opportunities and challenges.
Zaman, I., Pazouki, K., Norman, R., Younessi, S., & Coleman, S. (2017). Challenges and opportunities of big data analytics for upcoming regulations and future transformation of the shipping industry.
Zentes, J., Morschett, D., Schramm-Klein, H., Zentes, J., Morschett, D., & Schramm-Klein, H. (2011). Store location – trading area analysis and site selection. In J. Zentes, D. Morschett & H. Schramm-Klein (Eds.),
Submitted date:
09/08/2022
Accepted date:
02/23/2023