FaMoSim: a facilitated discrete event simulation framework to support online studies
Milena Silva de Oliveira; Carlos Henrique dos Santos; Gustavo Teodoro Gabriel; Fabiano Leal; José Arnaldo Barra Montevechi
Abstract
Keywords
References
Amaral, J. V. S., Montevechi, J. A. B., Miranda, R. C., & Sousa Junior, W. T. (2021). Metamodel-based simulation optimization: a systematic literature review.
Banks, J. (Ed.). (1998).
Banks, J., Carson, J. S., Nelson, B., & Nicol, D. M. (2010).
Barlas, P., & Heavey, C. (2016). Automation of input data to discrete event simulation for manufacturing: a review.
Byrne, J., Byrne, P. J., Ferreira, D. C., & Ivers, A. M. (2013). Towards a cloud based SME data adapter for simulation modelling. In
Choi, S., & Kang, G. (2018). Towards development of cyber-physical systems based on integration of heterogeneous technologies.
Coghlan, D., Shani, A. R., Roth, J., & Sloyan, R. M. (2014). Executive development through insider action research: voices of insider action researchers.
Coughlan, P., & Coghlan, D. (2002). Action research for operations management.
Dani, V. S., Freitas, C. M. D. S., & Thom, L. H. (2019). Ten years of visualization of business process models: A systematic literature review.
Ferreira, W. P. A., Armellini, F., & Santa-Eulalia, L. A. (2020). Simulation in industry 4.0: A state-of-the-art review.
Franco, L. A., & Montibeller, G. (2010). Facilitated modelling in operational research.
Gabriel, G. T., Campos, A. T., Leal, F., & Montevechi, J. A. B. (2022). Good practices and deficiencies in conceptual modelling: a systematic literature review.
Goodall, P., Sharpe, R., & West, A. (2019). A data-driven simulation to support remanufacturing operations.
Hameed, B. Z., Tanidir, Y., Naik, N., Teoh, J. Y. C., Shah, M., Wroclawski, M. L., Kunjibettu, A. B., Castellani, D., Ibrahim, S., Silva, R. D., Rai, B., de la Rosette, J. J. M. C. H., Tp, R., Gauhar, V., & Somani, B. (2021). Will “hybrid” meetings replace face-to-face meetings post COVID-19 era? Perceptions and views from the urological community.
Harper, A., Mustafee, N., & Yearworth, M. (2021). Facets of trust in simulation studies.
Itzchakov, G., & Grau, J. (2022). High-quality listening in the age of COVID-19: a key to better dyadic communication for more effective organizations.
Ivers, A. M., Byrne, J., & Byrne, P. J. (2016). Analysis of SME data readiness: a simulation perspective.
Kotiadis, K., & Tako, A. A. (2018). Facilitated post-model coding in discrete event simulation (DES): A case study in healthcare.
Kotiadis, K., & Tako, A. A. (2021). A tutorial on involving stakeholders in facilitated simulation studies. In
Kotiadis, K., Tako, A. A., & Vasilakis, C. (2014). A participative and facilitative conceptual modelling framework for discrete event simulation studies in healthcare.
McKay, J., & Marshall, P. (2001). The dual imperatives of action research.
Mittal, S., Khan, M. A., Romero, D., & Wuest, T. (2018). A critical review of smart manufacturing & Industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs).
Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0.
Montevechi, J. A. B., Leal, F., Pinho, A. F., Costa, R. F., Oliveira, M. L. M., & Silva, A. L. F. (2010, December). Conceptual modeling in simulation projects by mean adapted IDEF: an application in a Brazilian tech company. In
Mourtzis, D. (2020). Simulation in the design and operation of manufacturing systems: state of the art and new trends.
Oeppen, R. S., Shaw, G., & Brennan, P. A. (2020). Human factors recognition at virtual meetings and video conferencing: how to get the best performance from yourself and others.
Oliveira, M. S., Leal, F., Pereira, T. F., & Montevechi, J. A. B. (2022). Facilitated discrete event simulation for industrial processes: a critical analysis.
Omri, N., Al Masry, Z., Mairot, N., Giampiccolo, S., & Zerhouni, N. (2020). Industrial data management strategy towards an SME-oriented PHM.
Pereira, T. F., Montevechi, J. A. B., Miranda, R. D. C., & Friend, J. D. (2015). Integrating soft systems methodology to aid simulation conceptual modeling.
Proudlove, N. C., Bisogno, S., Onggo, B. S., Calabrese, A., & Ghiron, N. L. (2017). Towards fully-facilitated discrete event simulation modelling: addressing the model coding stage.
Richter, A. (2020). Locked-down digital work.
Robinson, S. (2001). Soft with a hard centre: discrete-event simulation in facilitation.
Robinson, S. (2008). Conceptual modelling for simulation part I: definition and requirements.
Robinson, S., Radnor, Z. J., Burgess, N., & Worthington, C. (2012). SimLean: Utilising simulation in the implementation of lean in healthcare.
Robinson, S., Worthington, C., Burgess, N., & Radnor, Z. J. (2014). Facilitated modelling with discrete-event simulation: reality or myth?
Rodič, B. (2017). Industry 4.0 and the new simulation modelling paradigm.
Saez, M., Maturana, F. P., Barton, K., & Tilbury, D. M. (2018). Real-time manufacturing machine and system performance monitoring using internet of things.
Santos, C. H., Montevechi, J. A. B., Queiroz, J. A., Miranda, R. C., & Leal, F. (2021). Decision support in productive processes through DES and ABS in the Digital Twin era: a systematic literature review.
Santos, C. H., Queiroz, J. A., Leal, F., & Montevechi, J. A. B. (2022). Use of simulation in the Industry 4.0 context: creation of a digital twin to optimize decision making on non-automated process.
Scheidegger, A. P. G., Pereira, T. F., de Oliveira, M. L. M., Banerjee, A., & Montevechi, J. A. B. (2018). An introductory guide for hybrid simulation modelers on the primary simulation methods in industrial engineering identified through a systematic review of the literature.
Skoogh, A., Perera, T., & Johansson, B. (2012). Input Data management in simulation: industrial practices and future trends.
Standaert, W., Muylle, S., & Basu, A. (2022). Business meetings in a post-pandemic world: when and how to meet virtually?
Tako, A. A., Robinson, S., Gogi, A., Radnor, Z., & Davenport, C. (2021, March). Using facilitated simulation to evaluate integrated community-based health and social care services. In
Tako, A. A., & Kotiadis, K. (2015). PartiSim: a multi-methodology framework to support facilitated simulation modelling in healthcare.
Tako, A. A., & Kotiadis, K. (2018, December). Participative simulation (PartiSim): a facilitated simulation approach for stakeholder engagement. In
Tako, A. A., & Kotiadis, K. (2012). Facilitated conceptual modelling: practical issues and reflections. In
Tako, A. A., Robinson, S., Gogi, A., Radnor, Z., & Davenport, C. (2019, December). Evaluating community-based integrated health and social care services: the Simtegr8 approach. In
Tako, A. A., Tsioptsias, N., & Robinson, S. (2020). Can we learn from simplified simulation models? An experimental study on user learning.
Teerasoponpong, S., & Sopadang, A. (2021). A simulation-optimization approach for adaptive manufacturing capacity planning in small and medium-sized enterprises.
Vieira, A. A. C., Dias, L. M. S., Santos, M. Y., Pereira, G. A. B., & Oliveira, J. A. (2018). Setting an Industry 4.0 research and development agenda for simulation: a literature review.
Submitted date:
06/04/2022
Accepted date:
10/19/2022