Multi-criteria approach to adjust demand forecast for products: application of analytic hierarchy process
Lidiane Cristina de Oliveira; Bruna Cristine Scarduelli Pacheco; Claudio Luis Piratelli
Abstract
Keywords
References
Ackermann, F., & Eden, C. (2011). Strategic management of stakeholders: theory and practice.
Alalawin, A., Arabiyat, L. M., Alalaween, W., Qamar, A., & Mukattash, A. (2021). Forecasting vehicle’s spare parts price and demand.
Antosz, K., & Ratnayake, C. (2019). Spare parts criticality assessment and prioritization for enhancing manufacturing systems availability and reliability.
Banai-Kashani, A. (1984). Travel demand (modal split) estimation by hierarchical measurement.
Bertrand, J. W. M., & Fransoo, J. C. (2002). Operations management research methodologies using quantitative modeling.
Chen, F., Chen, J., & Liu, J. (2021). Forecast of flood disaster emergency material demand based on IACO-BP algorithm.
Chwif, L., & Medina, A. C. (2015).
Costa, T. C., & Belderrain, M. C. N. (2009, October 19-22). Decisão em grupo em métodos multicritério de apoio à decisão. In M. Massi (Org.),
Dodgson, J. S., Spackman, M., Pearman, A., & Phillips, L. (2009).
Dyer, R. F., & Forman, E. H. (1991).
Fradinata, E., Suthummanon, S., & Sunthiamorntut, W. (2017). Comparison of hybrid ANN models: a case study of instant noodle industry in Indonesia.
Fu, Q., Lv, J., Zhao, Z., & Yue, D. (2020). Research on optimization method of VR task scenario resources driven by user cognitive needs.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2005).
Hsu, C. C., & Sandford, B. A. (2007). The delphi technique: making sense of consensus.
Ishizaka, A., & Nemery, P. (2013).
Keeney, R. L. (2012). Value-focused brainstorming.
Koehler, A. B., Snyder, R. D., & Ord, J. K. (2001). Forecasting models and prediction intervals for the multiplicative Holt-Winters method.
Korpela, J., & Tuominen, M. (1996). Inventory forecasting with a multiple criteria decision tool.
Krajewski, L. J., & Ritzman, L. P. (1999).
Lee, C. K., Song, H. J., & Mjelde, J. W. (2008). The forecasting of International Expo tourism using quantitative and qualitative techniques.
Lee, M. W., Lee, J. S., Koo, C. R., & Yun, M. H. (1996). A model for estimating the potential demand of high touch product.
Li, S. G., & Kuo, X. (2008). The inventory management system for automobile spare parts in a central warehouse.
Makridakis, S., Wheelwright, S. C., & Hyndman, R. J. (1998).
Panagopoulos, G. P., Bathrellos, G. D., Skilodimou, H. D., & Martsouka, F. A. (2012). Mapping urban water demands using multi-criteria analysis and GIS.
Pandey, P., Kumar, S., & Shrivastava, S. (2015). A fuzzy decision making approach for analogy detection in new product forecasting.
Pellegrini, F., & Fogliatto, F. S. (2000). Estudo comparativo entre modelos de Winters e de BoxJenkins para a previsão de demanda sazonal.
Pellegrini, F., & Fogliatto, F. S. (2001). Passos para implantação de sistemas de previsão de demanda-técnicas e estudo de caso.
Prasad, R. D., & Raturi, A. (2017). Grid electricity for Fiji islands: future supply options and assessment of demand trends.
Rodrigues, D. S. S., Costa, H. G., Reis, A. C., Severo, E. A., & Guimarães, J. C. F. (2015). Demand forecasting process innovation using the analytic hierarchy process method.
Saaty, R. W. (1987). The analytic hierarchy process – what it is and how it is used.
Saaty, T. L. (1980).
Saaty, T. L., & Vargas, L. G. (2001).
Schneider, M. J., & Gupta, S. (2016). Forecasting sales of new and existing products using consumer reviews: a random projections approach.
Schoemaker, P. J. H. (1993). Multiple scenario development: its conceptual and behavioral foundation.
Shih, H., Stanley Lee, E., Chuang, S., & Chen, C. (2012). A forecasting decision on the sales volume of printers in Taiwan: an exploitation of the analytic network process.
Silva, B. W. (2019).
Taylan, O., Alamoudi, R., Kabli, M., Aljifri, A., Ramzi, F., & Herrera-Viedma, E. (2020). Assessment of energy systems using extended fuzzy AHP, fuzzy VIKOR, and TOPSIS approaches to manage non-cooperative opinions.
Tubino, D. F. (2017).
Werner, L., & Ribeiro, J. L. D. (2006). Composite model to forecast demand through forecast integration.
Wu, L., Xia, H., Cao, X., Zhang, C., & Dai, C. (2018). Research on quantitative demand of underground space development for urban rail transit station areas: a case study of metro line 1 in Xuzhou, China.
Xu, H., Li, W., Wang, T., & Yang, A. (2019). Research on dynamic prediction method for traffic demand based on trip generation analysis.
Yüksel, S. (2007). An integrated forecasting approach to hotel demand.
Zhou, N., Xu, B., Li, X., Cui, R., Liu, X., Yuan, X., & Zhao, H. (2020). An assessment model of fire resources demand for storage of hazardous chemicals.
Submitted date:
01/24/2022
Accepted date:
07/12/2022