A multiobjective portfolio optimization for energy assets using D-Optimal design and mixture design of experiments
Gustavo dos Santos Leal; Estevão Luiz Romão; Daniel Leal de Paula Esteves dos Reis; Pedro Paulo Balestrassi; Anderson Paulo de Paiva
Abstract
Keywords
References
Ahmadi-Javid, A., & Fallah-Tafti, M. (2019). Portfolio optimization with entropic value-at-risk.
Anagnostopoulos, K. P., & Mamanis, G. (2010). A portfolio optimization model with three objectives and discrete variables.
Ardia, D., Boudt, K., & Catania, L. (2019). Generalized autoregressive score models in R: the GAS package.
Bacci, L. A., Mello, L. G., Incerti, T., Paiva, A. P., & Balestrassi, P. P. (2019). Optimization of combined time series methods to forecast the demand for coffee in Brazil: a new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated factor scores.
Behr, P., Guettler, A., & Miebs, F. (2013). On portfolio optimization: imposing the right constraints.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.
Çela, E., Hafner, S., Mestel, R., & Pferschy, U. (2021). Mean-variance portfolio optimization based on ordinal information.
Chan, J. C. C., & Grant, A. L. (2016). Modeling energy price dynamics: GARCH versus stochastic volatility.
Creal, D., Koopman, S. J., & Lucas, A. (2013). Generalized autoregressive score models with applications.
Cura, T. (2009). Particle swarm optimization approach to portfolio optimization.
Garg, V., & Deep, K. (2019). Portfolio optimization using Laplacian biogeography based optimization.
Harvey, A., & Sucarrat, G. (2014). EGARCH models with fat tails, skewness and leverage.
Hu, Y., Liu, K., Zhang, X., Su, L., Ngai, E. W. T., & Liu, M. (2015). Application of evolutionary computation for rule discovery in stock algorithmic trading: a literature review.
Johnson, R. A., & Wichern, D. W. (2007).
Lawson, J. (2014).
Leite, R. R. (2019).
Li, Y., Jiang, X. F., Tian, Y., Li, S. P., & Zheng, B. (2019). Portfolio optimization based on network topology.
Li, Z., & Shu, H. (2011). Optimal portfolio selection with liability management and Markov switching under constrained variance.
Luz, E. R., Romão, E. L., Streitenberger, S. C., Gomes, J. H. F., Paiva, A. P., & Balestrassi, P. P. (2021). A new multiobjective optimization with elliptical constraints approach for nonlinear models implemented in a stainless steel cladding process.
Mansini, R., Ogryczak, W., & Speranza, M. G. (2014). Twenty years of linear programming based portfolio optimization.
Markowitz, H. (1952). Portfolio selection.
Mendes, R. R. A., Paiva, A. P., Peruchi, R. S., Balestrassi, P. P., Leme, R. C., & Silva, M. B. (2016). Multiobjective portfolio optimization of ARMA-GARCH time series based on experimental designs.
Mercurio, P. J., Wu, Y., & Xie, H. (2020). An entropy-based approach to portfolio optimization.
Merton, R. C. (1971). Optimum consumption and portfolio rules in a continuous-time model. In W. T. Ziemba & R. G. Vickson (Eds.),
Milhomem, D. A., & Dantas, M. J. P. (2020). Analysis of new approaches used in portfolio optimization: a systematic literature review.
Montgomery, D. C. (2017).
Nguyen, T. D., & Lo, A. W. (2012). Robust ranking and portfolio optimization.
Oliveira, F. A., Paiva, A. P., Lima, J. W. M., Balestrassi, P. P., & Mendes, R. R. A. (2011). Portfolio optimization using Mixture Design of Experiments: Scheduling trades within electricity markets.
Paiva, A. P., Paiva, E. J., Ferreira, J. R., Balestrassi, P. P., & Costa, S. C. (2009). A multivariate mean square error optimization of AISI 52100 hardened steel turning.
Rather, A. M., Sastry, V. N., & Agarwal, A. (2017). Stock market prediction and Portfolio selection models: a survey.
Rocha, L. C. S., Paiva, A. P., Rotela Junior, P., Balestrassi, P. P., Campos, P. H. S., & Davim, J. P. (2017). Robust weighting applied to optimization of AISI H13 hardened-steel turning process with ceramic wiper tool: a diversity-based approach.
Ross, S. A., Westerfield, R., Jaffe, J., & Jordan, B. (2017).
Staiculescu, D., Bushyager, N., Obatoyinbo, A., Martin, L. J., & Tentzeris, M. M. (2005). Design and optimization of 3-D compact stripline and microstrip Bluetooth/WLAN balun architectures using the design of experiments technique.
Tillmann, W., Vogli, E., Baumann, I., Kopp, G., & Weihs, C. (2010). Desirability-based multi-criteria optimization of HVOF spray experiments to manufacture fine structured wear-resistant 75Cr 3C 2-25(NiCr20) coatings.
Tsay, R. S. (2005).
Uryasev, S. (2000). Conditional value-at-risk: optimization algorithms and applications. In
Yondo, R., Andrés, E., & Valero, E. (2018). A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses.
Submitted date:
10/01/2021
Accepted date:
08/05/2022