A PRISMA-driven systematic review of data mining methods used for defects detection and classification in the manufacturing industry
Blanka Bártová; Vladislav Bína; Lucie Váchová
Abstract
Keywords
References
Baly, R., & Hajj, H. (2012). Wafer classification using support vector machines.
Bartova, B., & Bina, V. (2020). Data mining methods used for quality management: a bibliometric analysis. In
Batool, U., Shapiai, M. I., Fauzi, H., & Fong, J. X. (2020). Convolutional neural network for imbalanced data classification of silicon wafer defects. In
Bella, R., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2019). Wafer defect map classification using sparse convolutional networks. In E. Ricci, S. R. Bulò, C. Snoek, O. Lanz, S. Messelodi & N. Sebe (Eds.),
Bowers, K., & Pickerel, T. V. (2019). Vox Populi 4.0: big data tools zoom in on the voice of the customer.
Bumrungkun, P. (2019). Defect detection in textile fabrics with snake active contour and support vector machines.
Cerezci, F., Kazan, S., Oz, M. A., Oz, C., Tasci, T., Hizal, S., & Altay, Ç. (2020). Online metallic surface defect detection using deep learning.
Chang, C., Li, C., Chang, Y., & Jeng, M. (2011). Wafer defect inspection by neural analysis of region features.
Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X. (2015). Data mining for the internet of things: literature review and challenges.
Chen, H., Pang, Y., Hu, Q., & Liu, K. (2020a). Solar cell surface defect inspection based on multispectral convolutional neural network.
Chen, X., Chen, J., Han, X., Zhao, C., Zhang, D., Zhu, K., & Su, Y. (2020b). A light-weighted CNN model for wafer structural defect detection.
Chien, J., Wu, M., & Lee, J. (2020). Inspection and classification of semiconductor wafer surface defects using CNN deep learning networks.
Chondronasios, A., Popov, I., & Jordanov, I. (2016). Feature selection for surface defect classification of extruded aluminum profiles.
Choudhary, A. K., Harding, J., & Tiwari, M. K. (2009). Data mining in manufacturing: a review based on the kind of knowledge.
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery: an overview. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth & R. Uthurusamy (Eds.),
Fayyad, U., & Stolorz, P. (1997). Data mining and KDD: promise and challenges.
Gibert, K., Sànchez-Marrè, M., & Codina, V. (2010). Choosing the right data mining technique: classification of methods and intelligent recommendation. In
Han, J., & Kamber, M. (2001).
Han, Y., & Yu, H. (2020). Fabric defect detection system using stacked convolutional denoising auto-encoders trained with synthetic defect data.
Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: a review.
Hoang, N., & Nguyen, Q. (2020). A novel approach for automatic detection of concrete surface voids using image texture analysis and history-based adaptive differential evolution optimized support vector machine.
Hsu, C.-Y. (2015). Clustering ensemble for identifying defective wafer bin map in semiconductor manufacturing.
Huang, Y., Qiu, C., Wang, X., Wang, S., & Yuan, K. (2020). A compact convolutional neural network for surface defect inspection.
Ihar, V., Mujeeb, A., Wenting, D., Marius, E., & Alexei, S. (2019).
Imoto, K., Nakai, T., Ike, T., Haruki, K., & Sato, Y. (2019). A CNN-based transfer learning method for defect classification in semiconductor manufacturing.
Jacob, D. (2017).
Jeong, E., Kim, J., Jang, W., Lim, H., Noh, H., & Choi, J. (2021). A more reliable defect detection and performance improvement method for panel inspection based on artificial intelligence.
Jeong, Y. (2017). Semiconductor wafer defect classification using support vector machine with weighted dynamic time warping kernel function.
Jiang, H., Hu, Q., Zhi, Z., Gao, J., Gao, Z., Wang, R., He, S., & Li, H. (2021). Convolution neural network model with improved pooling strategy and feature selection for weld defect recognition.
Jiang, Y., Wu, J., & Zong, C. (2014). An effective diagnosis method for single and multiple defects detection in gearbox based on nonlinear feature selection and kernel-based extreme learning machine.
Ji-Deok, S., Young-Gyu, K., & Tae-Hyoung, P. (2018). SMT defect classification by feature extraction region optimization and machine learning.
Jiju, A. (2020). Quality 4.0: taking quality to its next level.
Jingzhong, H., Kewen, X., Fan, Y., & Baokai, Z. (2018). Strip steel surface defects recognition based on socp optimized multiple kernel RVM.
Kholief, E. A., Darwish, S. H., & Fors, M. N. (2017). Detection of steel surface defect based on machine learning using deep auto-encoder network. In
Kitchenham B. (2004).
Kitchenham, B., & Charters, S. (2007).
Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering: a tertiary study.
Konovalenko, I., Maruschak, P., Brezinova, J., Viňáš, J., & Brezina, J. (2020). Steel surface defect classification using deep residual neural network.
Kusiak, A. (2001). Feature transformation methods in data mining.
Lee, C. K. H., Choy, K. L., Ho, G. T. S., Chin, K. S., Law, K. M. Y., & Tse, Y. K. (2013). A hybrid OLAP-association rule mining based quality management system for extracting defect patterns in the garment industry.
Lee, H., & Ryu, K. (2020). Dual-kernel-based aggregated residual network for surface defect inspection in injection molding processes.
Lee, J., & Lee, J. (2019). A reliable defect detection method for patterned wafer image using convolutional neural networks with the transfer learning.
Lee, S. Y., Tama, B. A., Moon, S. J., & Lee, S. (2019). Steel surface defect diagnostics using deep convolutional neural network and class activation map.
Li, H., Cui, C., & Guo, H. (2019). Identification and classification of surface defects in polycrystalline diamond compact. In
Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2019). Automated defect inspection of LED chip using deep convolutional neural network.
Lin, Z., Ye, H., Zhan, B., & Huang, X. (2020). An efficient network for surface defect detection.
Liu, T., Huang, L., & Chen, B. (2019). Real-time defect detection of laser additive manufacturing based on support vector machine.
Liyun, X., Boyu, L., Hong, M., & Xingzhong, L. (2020). Improved faster R-CNN algorithm for defect detection in powertrain assembly line.
Ma, L., Xie, W., & Zhang, Y. (2019). Blister defect detection based on convolutional neural network for polymer lithium-ion battery.
Mao, Q., Ma, H., Zhang, X., & Zhang, G. (2018). An improved skewness decision tree svm algorithm for the classification of steel cord conveyor belt defects.
Mei, S., Wang, Y., & Wen, G. (2018). Automatic fabric defect detection with a multi-scale convolutional denoising autoencoder network model.
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. (2009). Preferred reporting items for systematic reviews and meta-analyses: the prisma statement.
Oliff, H., & Liu, Y. (2017). Towards Industry 4.0 utilizing data-mining techniques: a case study on quality improvement.
Ooi, M., Sok, H. K., Kuang, Y. C., Demidenko, S., & Chan, C. (2013). Defect cluster recognition system for fabricated semiconductor wafers.
Patel, H. P., & Patel, D. (2014). A brief survey of data mining techniques applied to agricultural data.
Perzyk, M. (2006). Data mining in foundry production. In K. Świątkowski (Ed.),
Perzyk, M., Biernacki, R., & Kozlowski, J. (2007). Data mining in manufacturing: methods, potentials, limitations. In
ProQuest. (2021). Retrieved in 14 March 2021, from
Radhika, N., Senapathi, S. B., Subramaniam, R., Subramany, R., & Vishnu, K. N. (2013). Pattern recognition based surface roughness prediction in turning hybrid metal matrix composite using random forest algorithm.
Raluca, D. (2021). Knowledge management systems in Quality 4.0.
Romli, I., Pardamean, T., Butsianto, S., Wiyatno, T. N., & Mohamad, E. (2021). Naive bayes algorithm implementation based on particle swarm optimization in analyzing the defect product.
Scopus. (2021). Retrieved in 12 March 2021, from
Shi, J., Li, Z., Zhu, T., Wang, D., & Ni, C. (2020a). Defect detection of industry wood veneer based on NAS and multi-channel Mask R-CNN.
Shi, W., Zhang, L., Li, Y., & Liu, H. (2020b). Adversarial semi-supervised learning method for printed circuit board unknown defect detection.
Shin, S., Jin, C., Yu, J., & Rhee, S. (2020). Real-time detection of weld defects for automated welding process base on deep neural network.
Shon, H. S., Batbaatar, E., Cho, W., & Choi, S. G. (2021). Unsupervised pre-training of imbalanced data for identification of wafer map defect patterns.
Song, J., Kim, Y., & Park, T. (2019). SMT defect classification by feature extraction region optimization and machine learning.
Tabernik, D., Šela, S., Skvarč, J., & Skočaj, D. (2019). Segmentation-based deep-learning approach for surface-defect detection.
Taha, K., Salah, K., & Yoo, P. D. (2018). Clustering the dominant defective patterns in semiconductor wafer maps.
Takada, Y., Shiina, T., Usami, H., Iwahori, Y., & Bhuyan, M. K. (2017).
Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing.
Wang, T., Chen, Y., Qiao, M., & Snoussi, H. (2018). Afast and robust convolutional neural network-based defect detection model in product quality control.
Xu, L. D., Xu, E. L., & Li, L. (2018). Industry 4.0: state of the art and future trends.
Xu, L., Lv, S., Deng, Y., & Li, X. (2020). A weakly supervised surface defect detection based on convolutional neural network.
Yang, J., Li, S., Wang, Z., & Yang, G. (2019). Real-time tiny part defect detection system in manufacturing using deep learning.
Yang, S., Li, X., Jia, X., Wang, Y., Zhao, H., & Lee, J. (2020). Deep learning-based intelligent defect detection of cutting wheels with industrial images in manufacturing.
Yapi, D., Allili, M. S., & Baaziz, N. (2017). Automatic fabric defect detection using learning-based local textural distributions in the contourlet domain.
Yu, L., Wang, Z., & Duan, Z. (2019). Detecting gear surface defects using background-weakening method and convolutional neural network.
Web of Science. (2021). Retrieved in 15 March 2021, from
Yuan, T., Bae, S. J., & Park, J. I. (2010). Bayesian spatial defect pattern recognition in semiconductor fabrication using support vector clustering.
Yuan, T., Kuo, W., & Bae, S. J. (2011). Detection of spatial defect patterns generated in semiconductor fabrication processes.
Zhang, J., Lu, C., Wang, J., Wang, L., & Yue, X. (2019). Concrete cracks detection based on FCN with Dilated convolution.
Zhang, K., & Shen, H. (2021). Solder joint defect detection in the connectors using improved faster‐RCNN algorithm.
Zhao, W., Huang, H., Li, D., Chen, F., & Cheng, W. (2020a). Pointer defect detection based on transfer learning and improved cascade-RCNN.
Zhao, S., Yin, L., Zhang, J., Wang, J., & Zhong, R. (2020b). Real-time fabric defect detection based onmulti-scale convolutional neural network.
Zhao, W., Chen, F., Huang, H., Li, D., & Cheng, W. (2021). A new steel defect detection algorithm based on deep learning.
Zhu, Y., Yang, R., He, Y., Ma, J., Guo, H., Yang, Y., & Zhang, L. (2021). A Lightweight multiscale attention semantic segmentation algorithm for detecting laser welding defects on safety vent of power battery.
Submitted date:
08/03/2021
Accepted date:
12/08/2021