Analysis of deviation from nominal control chart performance on short production runs
Márcio Ricardo Morelli de Meira; Pedro Carlos Oprime; Ricardo Coser Mergulhão
Abstract
Keywords
References
Abbasi, S., & Haq, A. (2019). Enhanced adaptive CUSUM charts for process mean.
Ahmad, L., Aslam, M., & Jun, C-H. (2016). The design of a new repetitive sampling control chart based on process capability index.
Alwan, L. C. (2007). Effects of autocorrelation on control chart performance.
Aykroyd, R. G., Leiva, V., & Ruggeri, F. (2019). Recent developments of control charts, identification of big data sources and future trends of current research.
Baker, R. C., & Brobst, R. W. (1978). Conditional double sampling.
Barnard, G. A. (1959). Control charts and stochastic processes.
Brook, D., & Evans, D. A. (1972). An approach to the probability distribution of CUSUM rum length.
Capizzi, G., & Masarotto, G. (2012). An enhance control charts for startup processes and short runs.
Castagliola, P., & Maravelakis, P. E. (2011). A CUSUM control chart for monitoring the variance when parameters are estimated.
Castagliola, P., Celano, G., & Chen, G. (2009). The exact run length distribution and design of the S2 chart when the in-control variance is estimated.
Castagliola, P., Celano, G., & Fichera, S. (2013). Comparison of the X chart ant the t chart when the parameters are estimated.
Castagliola, P., & Wu, S. (2012). Design of the c and np charts when the parameters are estimated.
Castillo, E. D., & Montgomery, D. (1996). A general model for the optimal economic design of X charts used to control short or long run processes.
Castillo, E. D., Grayson, J. M., Montgomery, D. C., & Runger, G. C. (1996). A review of statistical process control techniques for short run manufacturing systems.
Celano, G., & Chakraborti, S. (2021). A distribution-free Shewhart-type Mann–Whitney control chart for monitoring finite horizon productions.
Celano, G., Castagliola, P., & Trovato, E. (2012). The economic performance of a CUSUM t control chart for monitoring short production runs.
Celano, G., Castagliola, P., Fichera, S., & Nenes, G. (2013). Performance of t control charts in short runs with unknown shift sizes.
Celano, G., Castagliola, P., Trovato, E., & Fichera, S. (2010). Shewhart and EWMA t control charts for short production runs.
Chakraborti, S. (2000). Run length, average run length and false alarm rate of Shewhart X chart: exact derivations by conditioning.
Chakraborti, S. (2006). Parameter estimation and design considerations in prospective applications of the chart.
Chakraborti, S., Human, S. W., & Graham, M. A. (2008). Phase I, statistical process control charts: an overview and some results.
Crowder, S. V. (1992). An SPC model for short production runs: minimizing expected costs.
Cullen, C. C., & Bothe, D. R. (1989). SPC for short production runs.
Deming, W. E. (1986).
Duarte, B. P. M., & Saraiva, P. M. (2008). An optimization‐based approach for designing attribute acceptance sampling plans.
Elg, M., Olsson, J., & Dahlgaard, J. J. (2008). Implementing statistical process control: an organization perspective.
Farnum, N. R. (1992). Control charts for short run: nonconstant process and measurement error.
García-Díaz, J. C., & Aparisi, F. (2005). Economic design of EWMA control charts using regions of maximum and minimum ARL.
Garvin, D. A. (1993). Manufacturing strategic planning.
Grant, E. L. (1965).
Graves, S. B., Murphy, D. C., & Ringuest, J. L. (1999). Acceptance sampling versus redundancy as alternative means to achieving goals for system reliability.
Gu, K., Jia, X., & You, H. (2011). A study on t chart for short-run and mixed model productions.
Gu, K., Jia, X., You, H., & Zhang, S. (2014). A t-chart for monitoring multi-variety and small batch production run.
Hawkins, D. M., & Olwell, D. H. (1998).
Hillier, F. S. (1969). X and R chart control limits based on small number of subgroups.
Ho, L., & Trindade, A. L. (2009). Economic design of an X chart for short run production.
Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., & Woodall, W. H. (2006). Effects of parameter estimation on control chart properties: a literature review.
Jones-Farmer, L. A., Woodall, W. H., Steiner, S. H., & Champ, C. W. (2014). An overview of phase I analysis for process improvement and monitoring.
Juran, J. M., & Gryna, F. M. (1988).
Kemp, K. W. (1961). The average run length of the cumulative sum chart when a V mask is used.
Kanji, G. K. (1994). Total quality management and statistical understanding.
Khoo, M. B. C., Quah, S. H., Low, H. C., & Ch’ng, C. K. (2005). Short runs multivariate control chart for process dispersion.
Kim, G. C., & Schniederjans, M. J. (2000). Use of short run statistical process control techniques: a comparison of US and Japanese manufacturing.
Kim, K., Mahmoud, M. A., & Woodall, W. H. (2003). On the monitoring of linear profiles.
Korzenowski, A. L., & Werner, L. (2012). Probabilidade de erro do tipo I nas cartas de Shewhart sob não normalidade.
Li, Z., Zou, C., Gong, Z., & Wang, Z. (2014). The computation of average run length and average time to signal: an overview.
Lizarelli, F. L., Bessi, N. C., Oprime, P. C., Amaral, R. M., & Chakraborti, S. (2016). A bibliometric analysis of 50 years of worldwide research on statistical process control.
Lucas, J. M., & Saccucci, M. S. (1990). Exponentially Weighted Moving Average control schemes: properties and enhancements.
McCracken, A. K., & Chakraborti, S. (2013). Control charts for joint monitoring of mean and variance: an overview.
Michel, R., & Fogliatto, F. S. (2002). Economic project of adaptive charts for process monitoring.
Montgomery, D. C. (2014).
Mood, A. M., Graybill, F. A., & Boes, D. C. (1974).
Nenes, G., & Tagaras, G. (2007). The economically designed two-sided Bayesian X control chart.
Oprime, P. C., & Ganga, G. M. D. (2013). A framework for continuous inspection plans using multivariate mathematical methods.
Oprime, P. C., & Mendes, G. H. S. (2017). The X-bar control chart with restriction of the capability indices.
Oprime, P. C., Lizarelli, F. L., Pimenta, M. L., & Achcar, J. A. (2019). Acceptance X-bar chart considering the sample distribution of capability indices, Cp and Cpk: a practical and economical approach.
Page, E. S. (1954). Continuous inspection schemes.
Psarakis, S., Vyniou, A. K., & Castagliola, P. (2014). Some recent development on the effect of parameter estimation on control chart.
Qin, S. J. (2003). Statistical process monitoring: basics and beyond.
Quesenberry, C. P. (1991). SPC Q charts for start-up processes and short or long runs.
Ryan, T. P. (2011).
Samohyl, R. W. (2009).
Shepardson, K., Runger, G. C., & Sullo, P. (1992).
Shewhart, W. A. (1931). Statistical method from an engineering viewpoint.
Singh, S., & Prajapati, D. R. (2013). Performance of CUSUM and EWMA charts for serial correlation.
Smith, E. S. (1947).
Sower, V. E., Motwani, J. G., & Savoie, M. J. (1994). Delta charts for short run statistical process control.
Toledo, J. C., Borrás, M. A. A., Mergulhão, R. C., & Mendes, G. H. S. (2013).
Wasserman, G. S. (1994). Short run SPC using dynamic control chart.
Wiederhold, M., Greipel, J., Ottone, R., & Schmitt, R. (2016). Clustering of similar processes for the application of statistical process control in small batch and job production.
Woodall, W. H. (1985). The statistical design of quality control charts.
Woodall, W. H. (2000). Controversies and contradictions in statistical process control.
Woodall, W. H., & Montgomery, D. C. (2014). Some current directions in the theory and application of statistical process monitoring.
Yang, M., Wu, Z., Lee, K. M., & Khoo, M. B. C. (2012). The X control chart for monitoring process shifts in mean and variance.
Yu, J., & Liu, J. (2011). LRProb control chart based on logistic regression for monitoring mean shifts of auto-correlated manufacturing processes.
Submitted date:
08/05/2021
Accepted date:
12/13/2021