Production
https://prod.org.br/article/doi/10.1590/0103-6513.20210058
Production
Thematic Section - Advances in Production Research

Interoperable data extraction and information enrichment system to support smart manufacturing: an experimental application on CNC machining lines of a healthcare product

Sofia Tonon Helena; Victória Romaguera Silva Camargo; Thomas Victor Belfort Amaral; Anderson Luis Szejka; Athon Francisco Curi Staben de Moura Leite; Matheus Beltrame Canciglieri

Downloads: 0
Views: 613

Abstract

Paper aims: This research develops an expert system for interoperable data acquirement and information enrichment in the manufacturing lines of a healthcare product, ensuring the correct data and information sharing and supporting the decision-making process.

Originality: The research contributes to creating and developing a novel method of knowledge representation that systematises the data collection and creates semantic relationships that allow the analysis of the productive performance of healthcare product manufacturing through semantic rules and inference engines.

Research method: The Interoperable Data Extraction and Information Enrichment system 4.0 (IDEIEs 4.0) was developed using an ontological approach and experimentally applied in an implantable Vascular Access Catheterindicated production process, which involves a machining controlling process.

Main findings: The developed system application pointed out the reduction of human mistakes in the data collecting, errors in the production control and data loss due to the digital automatic and interoperable collection process that brings precision in data collection and security in their storage.

Implications for theory and practice: The solution presented here can be used as a starting point for new directions of research to support the decision-making process with extra and formalised information, improving product quality, flexibilities the manufacturing process and reducing the time wasted.

Keywords

Industry 4.0, Healthcare Product, Data Collecting, Semantic Interoperability, Machining

References

Adamczyk, B. S., Szejka, A. L., & Canciglieri, O. (2020). Knowledge-based expert system to support the semantic interoperability in smart manufacturing. Computers in Industry, 115, 103161. http://dx.doi.org/10.1016/j.compind.2019.103161.

Ai, Y., Peng, M., & Zhang, K. (2018). Edge computing technologies for Internet of Things: a primer. Digital Communications and Networks, 4(2), 77-86. http://dx.doi.org/10.1016/j.dcan.2017.07.001.

Alaya, M. B., & Monteil, T. (2015). FRAMESELF: an ontology-based framework for the self-management of machine-to-machine systems. Concurrency and Computation, 27(6), 1412-1426. http://dx.doi.org/10.1002/cpe.3168.

Apache Jena. (2021). Retrieved in May 30, 2021, from https://jena.apache.org/

Apache NetBeans. (2021). Retrieved in May 30, 2021, from https://netbeans.apache.org/

Arden, N. S., Fisher, A. C., Tyner, K., Yu, L. X., Lee, S. L., & Kopcha, M. (2021). Industry 4.0 for pharmaceutical manufacturing: preparing for the smart factories of the future. International Journal of Pharmaceutics, 602, 120554. http://dx.doi.org/10.1016/j.ijpharm.2021.120554. PMid:33794326.

Awad, A., Trenfield, S. J., Pollard, T. D., Ong, J. J., Elbadawi, M., McCoubrey, L. E., Goyanes, A., Gaisford, S., & Basit, A. W. (2021). Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews, 178, 113958. http://dx.doi.org/10.1016/j.addr.2021.113958. PMid:34478781.

Bahrin, M. A. K., Othman, M. F., Azli, N. H. N., & Talib, M. F. (2016). Industry 4.0: a review on industrial automation and robotic. Jurnal Teknologi, 78(6-13), 137-143. https://doi.org/10.11113/jt.v78.9285.

Beckers, R., Kwade, Z., & Zanca, F. (2021). The EU medical device regulation: Implications for artificial intelligence-based medical device software in medical physics. Physica Medica, 83, 1-8. http://dx.doi.org/10.1016/j.ejmp.2021.02.011. PMid:33657513.

Büchi, G., Cugno, M., & Castagnoli, R. (2020). Smart factory performance and Industry 4.0. Technological Forecasting and Social Change, 150, 119790. http://dx.doi.org/10.1016/j.techfore.2019.119790.

Buranarach, M., Supnithi, T., Thein, Y. M., Ruangrajitpakorn, T., Rattanasawad, T., Wongpatikaseree, K., Lim, A. O., Tan, Y., & Assawamakin, A. (2016). OAM: an ontology application management framework for simplifying ontology-based semantic web application development. International Journal of Software Engineering and Knowledge Engineering, 26(1), 115-145. http://dx.doi.org/10.1142/S0218194016500066.

Canciglierie, A. B., da Rocha, T., Szejka, A. L., dos Santos Coelho, L., & Canciglieri Junior, O. (2021). Real-time machine learning automation applied to failure prediction in automakers supplier manufacturing system. In A. Dolgui, A. Bernard, D. Lemoine, G. von Cieminski, & D. Romero (Eds.), Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (pp. 303-310). Cham: Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-85874-2_32.

Cheng, M. (2003). Medical device regulations: Global overview and guiding principles. Geneva: WHO.

Chungoora, N., Young, R. I., Gunendran, G., Palmer, C., Usman, Z., Anjum, N. A., Cutting-Decelle, A.-F., Harding, J. A., & Case, K. (2013). A model-driven ontology approach for manufacturing system interoperability and knowledge sharing. Computers in Industry, 64(4), 392-401. http://dx.doi.org/10.1016/j.compind.2013.01.003.

Curi de Moura Leite, A. F., Canciglieri, M. B., Szejka, A. L., & Canciglieri Junior, O. (2017). The reference view for semantic interoperability in Integrated Product Development Process: the conceptual structure for injecting thin walled plastic products. Journal of Industrial Information Integration, 7, 13-23. http://dx.doi.org/10.1016/j.jii.2017.06.002.

Dalenogare, L. S., Benitez, G. B., Ayala, N. F., & Frank, A. G. (2018). The expected contribution of Industry 4.0 technologies for industrial performance. International Journal of Production Economics, 204, 383-394. http://dx.doi.org/10.1016/j.ijpe.2018.08.019.

Danjou, C., Le Duigou, J., & Eynard, B. (2016). Closed-loop manufacturing, a STEP-NC process for data feedback: a case study. Proceedings of the 48th CIRP Conference on Manufacturing Systems, 41, 852–857. http://dx.doi.org/10.1016/j.procir.2015.12.034.

Dziekaniak, G. V. (2010). Desenvolvimento de uma ontologia sobre componentes de ontologias. Perspectivas em Ciência da Informação, 15(1), 173-184. http://dx.doi.org/10.1590/S1413-99362010000100010.

Effendi, Y. A., & Sarno, R. (2017). SWRL rules for identifying short loops in business process ontology model. In Proceedings of the 11th International Conference on Information Communication Technology and System (ICTS) (pp. 209-214). USA: IEEE. https://doi.org/10.1109/ICTS.2017.8265672.

ERGOMAT. (2021). Retrieved in May 30, 2021, from https://www.ergomat.com.br/blog/2016/03/04/tnd-20051-tnd-20065-tnd-20065-ht/.

Farias, T. M., Roxin, A., & Nicolle, C. (2016). SWRL rule-selection methodology for ontology interoperability. Data & Knowledge Engineering, 105, 53-72. http://dx.doi.org/10.1016/j.datak.2015.09.001.

Gözaçan, N., & Lafci, Ç. (2020). Evaluation of key performance indicators of logistics firms. Logistics & Sustainable Transport, 11(1), 24-32. http://dx.doi.org/10.2478/jlst-2020-0002.

Hazra, A., Adhikari, M., Amgoth, T., & Srirama, S. N. (2021). A comprehensive survey on interoperability for IIoT: taxonomy, standards, and future directions. ACM Computing Surveys, 55(1), 1-35. http://dx.doi.org/10.1145/3485130.

Ke-Qing, H., Wang, J., Liang, P. (2010). Semantic Interoperability Aggregation in Service Requirements Refinement. Journal of Computer Science and Technology, 25(6), 1103–1117.https://doi.org/10.1007/s11390-010-9392-3.

Hu, L., Nguyen, N.-T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Al Sunny, S. M. N. (2018). Modeling of cloud-based digital twins for smart manufacturing with MT connect. Procedia Manufacturing, 26, 1193-1203. http://dx.doi.org/10.1016/j.promfg.2018.07.155.

Imran, M., & Young, R. I. M. (2016). Reference ontologies for interoperability across multiple assembly systems. International Journal of Production Research, 54(18), 5381-5403. http://dx.doi.org/10.1080/00207543.2015.1087654.

Instituto de Bioengenharia Erasto Gaertner – IBEG. (2021). Retrieved in May 30, 2021, from https://erastogaertner.com.br/pagina/instituto-de-bioengenharia-erasto-gaertner.

Koohang, A., Sargent, C. S., Nord, J. H., & Paliszkiewicz, J. (2022). Internet of Things (IoT): From awareness to continued use. International Journal of Information Management, 62, 102442. http://dx.doi.org/10.1016/j.ijinfomgt.2021.102442.

Lakka, E., Petroulakis, N. E., Hatzivasilis, G., Soultatos, O., Michalodimitrakis, M., Rak, U., Waledzik, K., Anicic, D., & Kulkarni, V. (2019). End-to-end semantic interoperability mechanisms for IoT. In Proceedings of the 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 1-6). USA: IEEE. https://doi.org/10.1109/CAMAD.2019.8858501.

Lelli, F. (2019). Interoperability of the Time of Industry 4.0 and the Internet of Things. Future Internet, 11(2), 36. http://dx.doi.org/10.3390/fi11020036.

Liao, Y., Deschamps, F., Loures, E., & Ramos, L. F. P. (2017). Past, present and future of Industry 4.0—A systematic literature review and research agenda proposal. International Journal of Production Research, 55(12), 3609-3629. http://dx.doi.org/10.1080/00207543.2017.1308576.

Liao, Y., Lezoche, M., Panetto, H., & Boudjlida, N. (2016). Semantic annotations for semantic interoperability in a product lifecycle management context. International Journal of Production Research, 54(18), 5534-5553. http://dx.doi.org/10.1080/00207543.2016.1165875.

Lipman, R. R., Feenay, A. B., Krima, S., & Toussaint, M. (2018, December 3). Product Definitions for Smart Manufacturing. NIST. Retrieved in May 30, 2021, from https://www.nist.gov/programs-projects/product-definitions-smart-manufacturing

Liyanage, H., Krause, P., & de Lusignan, S. (2015). Using ontologies to improve semantic interoperability in health data. Journal of Innovation in Health Informatics, 22(2), 309-315. http://dx.doi.org/10.14236/jhi.v22i2.159. PMid:26245245.

Lu, Y., Liu, C., Wang, K. I.-K., Huang, H., & Xu, X. (2020). Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robotics and Computer-integrated Manufacturing, 61, 101837. http://dx.doi.org/10.1016/j.rcim.2019.101837.

Mabkhot, M. M., Amri, S. K., Darmoul, S., Al-Samhan, A. M., & Elkosantini, S. (2020). An ontology-based multi-criteria decision support system to reconfigure manufacturing systems. IISE Transactions, 52(1), 18-42. http://dx.doi.org/10.1080/24725854.2019.1597317.

Moura, M. A. (2011). Interoperabilidade Semântica e Ontologia Semiótica: A construção e o compartilhamento de conceitos científicos em ambientes colaborativos online. Informação & Informação, 16(2), 165-179. http://dx.doi.org/10.5433/1981-8920.2011v16n2p165.

Noy, N. F., & Rubin, D. L. (2008). Translating the Foundational Model of Anatomy into OWL. Journal of Web Semantics, 6(2), 133-136. http://dx.doi.org/10.1016/j.websem.2007.12.001. PMid:18688289.

Ottonicar, S. L. C., & Valentim, M. L. P. (2019). A competência em informação no contexto do trabalho: uma revisão sistemática da literatura voltada para industria 4.0. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação, 24(56), 1-21. https://doi.org/10.5007/1518-2924.2019.e65145.

Palmer, C., Urwin, E. N., Pinazo-Sánchez, J. M., Cid, F. S., Rodríguez, E. P., Pajkovska-Goceva, S., & Young, R. I. M. (2016). Reference ontologies to support the development of global production network systems. Computers in Industry, 77, 48-60. http://dx.doi.org/10.1016/j.compind.2015.11.002.

Palmer, C., Usman, Z., Canciglieri Junior, O., Malucelli, A., & Young, R. I. M. (2018). Interoperable manufacturing knowledge systems. International Journal of Production Research, 56(8), 2733-2752. http://dx.doi.org/10.1080/00207543.2017.1391416.

Pereira, R. M., Szejka, A. L., & Canciglieri Junior, O. (2021). Towards an information semantic interoperability in smart manufacturing systems: Contributions, limitations and applications. International Journal of Computer Integrated Manufacturing, 34(4), 422-439. http://dx.doi.org/10.1080/0951192X.2021.1891571.

Protégé. (2021). Protégé Software. Retrieved in May 30, 2021, from https://protege.stanford.edu/

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Pascal, E., & Harnisch, M. (2015). Industry 4.0: The future of Productivity and Growth in Manufacturing Industries (No. 1, pp. 20). Boston: Boston Consulting Group.

Silva, R., Rudek, M., Szejka, A. L., & Canciglieri Junior, O. (2018). Machine vision systems for industrial quality control inspections. In P. Chiabert, A. Bouras, F. Noël, & J. Ríos (Eds.),Product Lifecycle Management to Support Industry 4.0 (Vol. 540, pp. 631-641). USA: Springer Nature Switzerland. http://dx.doi.org/10.1007/978-3-030-01614-2_58.

Stanojković, S. B., & Cvetković, D. (2018). Evaluation of interested parties by key performance indicators. Tehnicki Vjesnik (Strojarski Fakultet), 25(Suppl 1), 205-210. http://dx.doi.org/10.17559/TV-20170528140157.

Sworna, N. S., Islam, A. K. M. M., Shatabda, S., & Islam, S. (2021). Towards development of IoT-ML driven healthcare systems: a survey. Journal of Network and Computer Applications, 196, 103244. http://dx.doi.org/10.1016/j.jnca.2021.103244.

Szejka, A. L., Canciglieri Junior, O., Panetto, H., Rocha Loures, E., & Aubry, A. (2017). Semantic interoperability for an integrated product development process: a systematic literature review. International Journal of Production Research, 55(22), 6691-6709. http://dx.doi.org/10.1080/00207543.2017.1346314.

Szejka, A. L., & Canciglieri Junior, O. (2017). The application of reference ontologies for semantic interoperability in an integrated product development process in smart factories. Procedia Manufacturing, 11, 1375-1384. http://dx.doi.org/10.1016/j.promfg.2017.07.267.

Szejka, A. L., Canciglieri Junior, O., & Mas, F. (2022). Towards Knowledge-based System to support Smart Manufacturing Processes in Aerospace Industry based on Models for Manufacturing (MfM). In Green & Blue Technologies to support smart and sustainable organisations—IFIP 18th International Conference on Product Lifecycle Management (Vol. 639, pp. 1-10). Cham: Springer Nature Switzerland.

Yang, C., Shen, W., & Wang, X. (2016). Applications of Internet of Things in manufacturing. In Proceedings of the 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 670-675). USA: IEEE. https://doi.org/10.1109/CSCWD.2016.7566069.

Young, R. I. M., Gunendran, A. G., Cutting-Decelle, A. F., & Gruninger, M. (2007). Manufacturing knowledge sharing in PLM: A progression towards the use of heavy weight ontologies. International Journal of Production Research, 45(7), 1505-1519. http://dx.doi.org/10.1080/00207540600942268.

Zhuang, C., Gong, J., & Liu, J. (2021). Digital twin-based assembly data management and process traceability for complex products. Journal of Manufacturing Systems, 58, 118-131. http://dx.doi.org/10.1016/j.jmsy.2020.05.011.
 


Submitted date:
05/30/2021

Accepted date:
03/29/2022

626680e1a9539572062179e2 production Articles
Links & Downloads

Production

Share this page
Page Sections