Production
https://prod.org.br/article/doi/10.1590/0103-6513.20210037
Production
Research Article

Improving the tactical planning of solid waste collection with prescriptive analytics: a case study

Angie Paola Vargas; Danilo Díaz; Santiago Jaramillo; Francisco Rangel; Daniel Villa; Juan G. Villegas

Downloads: 0
Views: 867

Abstract

Paper aims: This study presents several business analytics tools that allow improving the tactical planning of the collection process for a Colombian solid-waste management company.

Originality: The extant literature of operations research/analytics applied to these systems focuses on facility location or vehicle routing. Tactical decisions are seldom studied in the operations research/analytics literature devoted to waste management systems. By contrast, the focus of this paper is on tactical decisions: fleet sizing, frequency assignment, route scheduling and internal resource allocation in a new waste transfer station.

Research method: We follow a multimethodology approach that uses mathematical programming, metaheuristics, and discrete event simulation. The models use historical information of the system, and the solution of a model are used as input data for the other models.

Main findings: Introducing a new waste transfer station allows an important reduction of the compactors fleet. However, to prevent a collapse in its internal operation an even operation is needed. This is achieved by rescheduling the routes to balance their arrival during the day. Additional benefits can be attained if some soft constraints are relaxed.

Implications for theory and practice: Practitioners looking for tactical planning tools on waste collection systems have here an example of their application and benefits. Improvements can be achieved by tactical planning without heavily disrupting decisions at the operational level.

Keywords

Optimization model, Metaheuristic algorithm, Discrete event simulation model, Waste management, Waste transfer station

References

Agalianos, K., Ponis, S. T., Aretoulaki, E., Plakas, G., & Efthymiou, O. (2020). Discrete event simulation and digital twins: review and challenges for logistics. Procedia Manufacturing, 51, 1636-1641. http://dx.doi.org/10.1016/j.promfg.2020.10.228.

Aguirre-Gonzalez, E. J., & Villegas, J. G. (2017). A two-phase heuristic for the collection of waste animal tissue in a Colombian rendering industry. Communications in Computer and Information Science, 742, 511-521. http://dx.doi.org/10.1007/978-3-319-66963-2_45.

Akbarpour, N., Salehi-Amiri, A., Hajiaghaei-Keshteli, M., & Oliva, D. (2021). An innovative waste management system in a smart city under stochastic optimization using vehicle routing problem. Soft Computing, 25(8), 6707-6727. http://dx.doi.org/10.1007/s00500-021-05669-6.

Anagnostopoulos, T., Zaslavsky, A., & Medvedev, A. (2015). Robust waste collection exploiting cost efficiency of IoT potentiality in Smart Cities. In 2015 International Conference on Recent Advances in Internet of Things (RIoT), (pp. 1–6). USA: IEEE. http://dx.doi.org/10.1109/RIOT.2015.7104901.

Banks, J., Carson II, J. S., Nelson, B. L., & Nicol, D. M. (2015). Discrete event system simulation. Harlow: Pearson.

Baykasoğlu, A., Subulan, K., Taşan, A. S., & Dudaklı, N. (2019). A review of fleet planning problems in single and multimodal transportation systems. Transportmetrica A: Transport Science, 15(2), 631-697. http://dx.doi.org/10.1080/23249935.2018.1523249.

Beliën, J., De Boeck, L., & Van Ackere, J. (2014). Municipal solid waste collection and management problems: a literarute review. Transportation Science, 48(1), 78-102. http://dx.doi.org/10.1287/trsc.1120.0448.

Bruecker, P., Beliën, J., Boeck, L., Jaeger, S., & Demeulemeester, E. (2018). A model enhancement approach for optimizing the integrated shift scheduling and vehicle routing problem in waste collection. European Journal of Operational Research, 266(1), 278-290. http://dx.doi.org/10.1016/j.ejor.2017.08.059.

Carosi, S., Frangioni, A., Galli, L., Girardi, L., & Vallese, G. (2019). A matheuristic for integrated timetabling and vehicle scheduling. Transportation Research Part B: Methodological, 127, 99-124. http://dx.doi.org/10.1016/j.trb.2019.07.004.

Edis, E. B., Oguz, C., & Ozkarahan, I. (2013). Parallel machine scheduling with additional resources: notation, classification, models and solution methods. European Journal of Operational Research, 230(3), 449-463. http://dx.doi.org/10.1016/j.ejor.2013.02.042.

Elidrissi, A., Benmansour, R., Benbrahim, M., & Duvivier, D. (2018). MIP formulations for identical parallel machine scheduling problem with single server. In Proceedings of the 2018 International Conference on Optimization and Applications, ICOA 2018 (pp. 1–6). USA: IEEE.http://dx.doi.org/10.1109/ICOA.2018.8370596

Fadda, E., Gobbato, L., Perboli, G., Rosano, M., & Tadei, R. (2018). Waste collection in urban areas: a case study. Interfaces, 48(4), 307-322. http://dx.doi.org/10.1287/inte.2018.0943.

García-Ayala, G., González-Velarde, J. L., Ríos-Mercado, R. Z., & Fernández, E. (2016). A novel model for arc territory design: promoting Eulerian districts. International Transactions in Operational Research, 23(3), 433-458. http://dx.doi.org/10.1111/itor.12219.

Ghiani, G., Laganà, D., Manni, E., Musmanno, R., & Vigo, D. (2014). Operations research in solid waste management: a survey of strategic and tactical issues. Computers & Operations Research, 44, 22-32. http://dx.doi.org/10.1016/j.cor.2013.10.006.

Ghiani, G., Manni, A., Manni, E., & Moretto, V. (2021). Optimizing a waste collection system with solid waste transfer stations. Computers & Industrial Engineering, 161, 107618. https://doi.org/10.1016/j.cie.2021.107618.

Gonela, V., Zhang, J., Salazar, D., & Awudu, I. (2020). Solid waste management: a review from the supply chain perspective. Journal of Supply Chain and Operations Management, 18(2), 229-256.

Kaza, S., Yao, L., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC: World Bank Group.

Knapčíková, L., Behúnová, A., & Behún, M. (2020). Using a discrete event simulation as an effective method applied in the production of recycled material. Advances in Production Engineering & Management, 15(4), 431-440. http://dx.doi.org/10.14743/apem2020.4.376.

Korcyl, A., Książek, R., & Gdowska, K. (2019). A MILP model for the municipal solid waste selective collection routing problem. Decision Making in Manufacturing and Services, 13, 1-2.

Kosacka-Olejnik, M., Kostrzewski, M., Marczewska, M., Mrówczyńska, B., & Pawlewski, P. (2021). How digital twin concept supports internal transport systems? — Literature review. Energies, 14(16), 4919. http://dx.doi.org/10.3390/en14164919.

Larson, R. C., Minkoff, A. S., & Gregory, P. (1991). A computer simulation model for fleet sizing for the marine division of the New York City department of sanitation. Waste Management & Research, 9(1), 267-276. http://dx.doi.org/10.1177/0734242X9100900138.

Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70. http://dx.doi.org/10.1016/j.ijinfomgt.2019.04.003.

Li, J., Borenstein, D., & Mirchandani, P. B. (2008). Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil. Omega, 36(6), 1133-1149. http://dx.doi.org/10.1016/j.omega.2006.04.007.

Lima, J. P., Lobato, K. C. D., Leal, F., & Lima, R. S. (2015). Urban solidwaste management by process mapping and simulation. Pesquisa Operacional, 35(1), 143-163. http://dx.doi.org/10.1590/0101-7438.2015.035.01.0143.

Machado, C. R., & Hettiarachchi, H. (2020). Composting as a municipal solid waste management strategy: lessons learned from Cajicá, Colombia. In H. Hettiarachchi, S. Caucci & K. Schwärzel (Eds.), Organic waste composting through nexus thinking (pp. 17-38). Cham: Springer Nature.

Mansini, R., & Speranza, M. G. (1998). A linear programming model for the separate refuse collection service. Computers & Operations Research, 25(7–8), 659-673. http://dx.doi.org/10.1016/S0305-0548(97)00094-4.

Mourão, M. C., Nunes, A. C., & Prins, C. (2009). Heuristic methods for the sectoring arc routing problem. European Journal of Operational Research, 196(3), 856-868. http://dx.doi.org/10.1016/j.ejor.2008.04.025.

Rada, E. C., Ragazzi, M., & Fedrizzi, P. (2013). Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies. Waste Management, 33(4), 785-792. http://dx.doi.org/10.1016/j.wasman.2013.01.002. PMid:23402896.

Ramos, T. R. P., Gomes, M. I., & Barbosa-Póvoa, A. P. (2014). Planning a sustainable reverse logistics system: balancing costs with environmental and social concerns. Omega, 48, 60-74. http://dx.doi.org/10.1016/j.omega.2013.11.006.

Santos, C. H. D., Lima, R. D. C., Leal, F., Queiroz, J. A., Balestrassi, P. P., & Montevechi, J. A. B. (2020). A decision support tool for operational planning: a Digital Twin using simulation and forecasting methods. Production, 30, e20200018. https://doi.org/10.1590/0103-6513.20200018.

Şeref, M. M. H., & Ahuja, R. K. (2008). Spreadsheet-based decision support systems. In F. Burstein & W. Holsapple (Eds.), Handbook on decision support systems (pp. 277-298). Berlin: Springer Nature.

Simonetto, E. O., & Borenstein, D. (2007). A decision support system for the operational planning of solid waste collection. Waste Management, 27(10), 1286-1297. http://dx.doi.org/10.1016/j.wasman.2006.06.012. PMid:17005387.

Sulemana, A., Donkor, E. A., Forkuo, E. K., & Oduro-Kwarteng, S. (2018). Optimal routing of solid waste collection trucks: a review of methods. Journal of Engineering, 2018, 4586376.

Van Engeland, J., & Beliën, J. (2021). Tactical waste collection: column generation and mixed integer programming based heuristics. OR-Spektrum, 43(1), 89-126. http://dx.doi.org/10.1007/s00291-020-00611-y.

Vargas, A. P., Jaramiillo, S., Rangel, F., Villa, D., & Villegas, J. G. (2020, December 9-11). Optimization models for the tactical planning of the solid waste collection operation: case study in Colombia. In 10th International Conference on Production Research – Americas 2020. Bahia Blanca, Argentina: ICPR.

Wang, P. (2020). Vehicle scheduling problem in terminals: a review. In B. B. Hedia, Y. Chen, G. Liu & Z. Yu (Eds.), International Conference on Verification and Evaluation of Computer and Communication Systems (pp. 54–67). Cham: Springer. http://dx.doi.org/10.1007/978-3-030-65955-4_5.
 


Submitted date:
04/30/2021

Accepted date:
12/15/2021

61f91b67a9539572a073b633 production Articles
Links & Downloads

Production

Share this page
Page Sections