Technology prioritization framework to adapt maintenance legacy systems for Industry 4.0 requirement: an interoperability approach
André Luiz Alcântara Castilho Venâncio; Eduardo de Freitas Rocha Loures; Fernando Deschamps; Alvaro dos Santos Justus; Alysson Felipe Lumikoski; Guilherme Louro Brezinski
Abstract
Keywords
References
Acatech. (2017).
Ahuja, I. P. S., & Khamba, J. S. (2008). Total productive maintenance: literature review and directions.
Alcácer, V., & Cruz-Machado, V. (2019). Scanning the Industry 4.0: a literature review on technologies for manufacturing systems.
Athawale, V. M., Chatterjee, P., & Chakraborty, S. (2012). Decision making for facility location selection using PROMETHEE II method.
Baidya, R., & Ghosh, S. K. (2015). Model for a predictive maintenance system effectiveness using the analytical hierarchy process as analytical tool.
Banihabib, M. E., Hashemi-Madani, F. S., & Forghani, A. (2017). Comparison of compensatory and non-compensatory multi criteria decision making models in water resources strategic management.
Batlajery, B. V., Khadka, R., Saeidi, A. M., Jansen, S., & Hage, J. (2014).
Battirola Filho, J. C. B., Piechnicki, F., Loures, E. D. F. R., & Santos, E. A. P. (2017). Process-Aware FMEA framework for failure analysis in maintenance.
Behera, P. K., & Sahoo, B. S. (2016). Leverage of multiple predictive maintenance technologies in root cause failure analysis of critical machineries.
Borangiu, T., Morariu, O., Răileanu, S., Trentesaux, D., Leitão, P., & Barata, J. (2020). Digital transformation of manufacturing. Industry of the future with cyber-physical production systems.
Botta, A., Donato, W., Persico, V., & Pescapé, A. (2016). Integration of cloud computing and internet of things: a survey.
Brans, J. P., & Mareschal, B. (2005). Promethee Methods. In J. Figueira, S. Greco, & M. Ehrogott (Eds.),
Brooke, C., & Ramage, M. (2001). Organisational scenarios and legacy systems.
Cañas, H., Mula, J., Díaz-Madroñero, M., & Campuzano-Bolarín, F. (2021). Implementing Industry 4.0 principles.
Capgemini Consulting. (2014).
Carvalho, N., Chaim, O., Cazarini, E., & Gerolamo, M. (2018). Manufacturing in the fourth industrial revolution: a positive prospect in Sustainable Manufacturing.
Chen, D., & Daclin, N. (2006). Framework for Enterprise Interoperability. In H. Panetto & N. Boudjlida (Eds.),
Chen, D., Dassisti, M., & Elvesæter, B. (2007). Enterprise Interoperability Framework and knowledge corpus. In
Chen, Y. (2017). Integrated and intelligent manufacturing: perspectives and enablers.
Cisco. (2015).
Cleland-Huang, J. (2007). Quality requirements and their role in successful products jane.
Cupek, R., Drewniak, M., Ziebinski, A., & Fojcik, M. (2019). “Digital Twins” for highly customized electronic devices-case study on a rework operation.
Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., Hosseini, M. R., & Ameyaw, E. E. (2020). Artificial intelligence in the AEC industry: scientometric analysis and visualization of research activities.
Deac, V., Cârstea, G., Bâgu, C., & Pârvu, F. (2010). The modern approach to industrial maintenance management.
Deloitte. (2015).
Dhillon, B. S. (2002).
Efthymiou, K., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2012). On a predictive maintenance platform for production systems.
Elbok, G., & Berrado, A. (2020). Project prioritization for portfolio selection using MCDA. In
Erasmus, J., Vanderfeesten, I., Traganos, K., Keulen, R., & Grefen, P. (2020). The HORSE project: the application of business process management for flexibility in smart manufacturing.
Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the Analytic Hierarchy Process.
Furch, J., Turo, T., Krobot, Z., & Stastny, J. (2018). Using Telemetry for Maintenance of Special Military Vehicles. In: J. Mazal (Eds.),
Gallegos-Baeza, D., Caro, A., Rodríguez, A., & Velásquez, I. (2021). Aligning business strategy and information technologies in local governments using enterprise architectures.
Jantunen, E., Emmanouilidis, C., Arnaiz, A., & Gilabert, E. (2011). e-Maintenance: trends, challenges and opportunities for modern industry.
Justus, A. D. S., Ramos, L. F. P., & Loures, E. F. R. (2018). A capability assessment model of industry 4.0 technologies for viability analysis of poc (proof of concept) in an automotive company.
Karim, R., Westerberg, J., Galar, D., & Kumar, U. (2016). Maintenance analytics: the new know in maintenance.
Kodali, R., Mishra, R. P., & Anand, G. (2009). Justification of world-class maintenance systems using analytic hierarchy constant sum method.
Kozma, D., Varga, P., & Larrinaga, F. (2021). System of systems lifecycle management—a new concept based on process engineering methodologies.
Kumar, A., Shankar, R., & Thakur, L. S. (2018). A big data driven sustainable manufacturing framework for condition-based maintenance prediction.
Lamine, E., Guédria, W., Rius Soler, A., Ayza Graells, J., Fontanili, F., Janer-García, L., & Pingaud, H. (2017). An inventory of interoperability in healthcare ecosystems: Characterization and challenges. In B. Archimède & B. Vallespir (Eds.),
Laney, D. (2001). Evidence of two effects in the size segregation process in dry granular media.
Lazai Junior, M., Loures, E. F. R., Santos, E. A. P., & Szejka, A. L. (2020). Avaliação da gestão da segurança funcional de máquinas na indústria automotiva sob a ótica da interoperabilidade.
Liou, J. J. H., Lu, M. T., Hu, S. K., Cheng, C. H., & Chuang, Y. C. (2017). A hybrid MCDM model for improving the electronic health record to better serve client needs.
Liu, K., Alderson, A., Sharp, B., Shah, H., & Dix, A. (1998). Using semiotic techniques to derive requirements from legacy systems. In:
Matsumoto, T., Chen, Y., Nakatsuka, A., & Wang, Q. (2020). Research on horizontal system model for food factories: a case study of process cheese manufacturer.
McKinsey & Company. (2016).
Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0.
Morariu, O., Borangiu, T., Raileanu, S., & Morariu, C. (2016). Redundancy and scalability for virtualized MES systems with programmable infrastructure.
Muller, A., Crespo Marquez, A., & Iung, B. (2008). On the concept of e-maintenance: review and current research.
Oztemel, E., & Gursev, S. (2020). Literature review of Industry 4.0 and related technologies.
Patalas-Maliszewska, J., & Skrzeszewska, M. (2018). An Evaluation of the effectiveness of applying the mes in a maintenance department: a case study.
Pedone, G., & Mezgár, I. (2018). Model similarity evidence and interoperability affinity in cloud-ready Industry 4.0 technologies.
Pintelon, L., & Parodi-herz, A. (2008). Maintenance: an evolutionary perspective. In K. A. H. Kobacy & D. N. P. Murthy (Eds.),
Plattform Industrie 4.0. (2015).
PWC (2015).
PWC. (2016).
Ramage, M. (2000). Global perspectives on legacy systems. In: P. Henderson (Ed.),
Rojko, A. (2017). Industry 4.0 concept: background and overview.
Roland Berger. (2014).
Ruschel, E., Santos, E. A. P., & Loures, E. F. R. (2017). Industrial maintenance decision-making: a systematic literature review.
Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: the future of productivity and growth in manufacturing industries.
Saaty, R. W. (1987). The analytic hierarchy process-what and how it is used.
Santos, M. M., Resende, D., Garzedin, O., Portugal, P., & Vasques, F. (2009). Technical and economical assessment of the use of wireless gateways in industrial networks. In
Schmidt, B., Wang, L., & Galar, D. (2017). Semantic framework for predictive maintenance in a cloud environment.
Sipsas, K., Alexopoulos, K., Xanthakis, V., & Chryssolouris, G. (2016). Collaborative maintenance in flow-line manufacturing environments: an Industry 4.0 approach.
Sotnyk, I., Zavrazhnyi, K., Kasianenko, V., Roubík, H., & Sidorov, O. (2020). Investment management of business digital innovations.
Ssebuggwawo, D., Hoppenbrouwers, S., & Proper, E. (2009). Group decision making in collaborative modeling: aggregating individual preferences with AHP. In B. van Dongen & H. Reijers (Eds.),
Tao, F., & Qi, Q. (2019). New IT driven service-oriented smart manufacturing: Framework and characteristics.
The Warwick Manufacturing Group. (2017).
Vaisnys, P., Contri, P., Rieg, C., & Bieth, M. (2006).
Wang, Y., Gogu, C., Binaud, N., Bes, C., Haftka, R. T., & Kim, N. H. (2017). A cost driven predictive maintenance policy for structural airframe maintenance.
Welz, Z., Coble, J., Upadhyaya, B., & Hines, W. (2017). Maintenance-based prognostics of nuclear plant equipment for long-term operation.
Wiech, M., Boffelli, A., Elbe, C., Carminati, P., Friedli, T., & Kalchschmidt, M. (2022). Implementation of big data analytics and Manufacturing Execution Systems: an empirical analysis in German-speaking countries.
Wintrich, N., Gering, P., Meissner, M. (2015). Integrated Process Oriented Requirements Management. In: C. Debruyne, H. Panetto, R. Meersman, T. Dillon, G. Weichhart, Y. An, C. A. Ardagna (Eds.),
Woodhead, R., Stephenson, P., & Morrey, D. (2018). Digital construction: From point solutions to IoT ecosystem.
Yam, R. C. M., Tse, P. W., Li, L., & Tu, P. (2001). Intelligent predictive decision support system for condition-based maintenance.
Yokoyama, A. (2015). Innovative changes for maintenance of railway by using ICT-To achieve “smart Maintenance.”.
Yu, Y., Zhang, J. Z., Cao, Y., & Kazancoglu, Y. (2021). Intelligent transformation of the manufacturing industry for Industry 4.0: Seizing financial benefits from supply chain relationship capital through enterprise green management.
Submitted date:
04/30/2021
Accepted date:
03/08/2022