A decision support tool for operational planning: a Digital Twin using simulation and forecasting methods
Carlos Henrique dos Santos; Renan Delgado Camurça Lima; Fabiano Leal; José Antonio de Queiroz; Pedro Paulo Balestrassi; José Arnaldo Barra Montevechi
Abstract
Keywords
References
Alam, K. M., & El Saddik, A. (2017). C2PS: a Digital Twin architecture reference model for the cloud-based cyber-physical systems.
Arvan, M., Fahimnia, B., Reisi, M., & Siemsen, E. (2019). Integrating human judgment into quantitative forecasting methods: a review.
Balestrassi, P. P., Popova, E., Paiva, A. P., & Marangon Lima, J. W. (2009). Design of experiments on neural network’s training for nonlinear time series forecasting.
Banks, J., Carson Ii, J. S., Nelson, B. L., & Nicol, D. M. (2010).
Beregi, R., Szaller, Á., & Kádár, B. (2018). Snergy of multi-modelling for process control.
Beutel, A., & Minner, S. (2012). Safety stock planning under causal demand forecasting.
Chwif, L., & Medina, A. C. (2015).
Fishman, G. S. (2001).
Goldsman, D., Nance, R. E., & Wilson, J. R. (2010). A brief history of simulation revisited. In
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy.
Kalchschmidt, M. (2012). Best practices in demand forecasting: tests of universalistic, contingency and configurational theories.
Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital Twin in manufacturing: a categorical review and classification.
Kunath, M., & Winkler, H. (2018). Integrating the Digital Twin of the manufacturing system into a decision support system for improving the order management process.
Law, A. M. (2014).
Lu, Y., Min, Q., Liu, Z., & Wang, Y. (2019). An IoT-enabled simulation approach for process planning and analysis: a case from engine remanufacturing industry.
Matsumoto, M., & Komatsu, S. (2015). Demand forecasting for production planning in remanufacturing.
Montgomery, D. C., & Runger, G. C. (2012).
Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2008).
Moon, S., Hicks, C., & Simpson, A. (2012). The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy: a case study.
Mourtzis, D. (2020). Simulation in the design and operation of manufacturing systems: state of the art and new trends.
Negahban, A., & Smith, J. S. (2014). Simulation for manufacturing system design and operation: literature review and analysis.
Poloni, F., & Sbrana, G. (2015). A note on forecasting demand using the multivariate exponential smoothing framework.
Rego, J. R., & Mesquita, M. A. (2015). Demand forecasting and inventory control: a simulation study on automotive spare parts.
Rodič, B. (2017). Industry 4.0 and the new simulation modelling paradigm.
Safarishahrbijari, A. (2018). Workforce forecasting models: a systematic review.
Sargent, R. G. (2013). Verification and validation of simulation models.
Shafto, M., Conroy, M., Doyle, R., Glaessgen, E., Klemp, C., Jacqueline, L., & Wang, L. (2010).
Sharma, P., Kulkarni, M. S., & Yadav, V. (2017). A simulation-based optimization approach for spare parts forecasting and selective maintenance.
Steringer, R., Zorrer, H., Zambal, S., & Eitzinger, C. (2019). Using discrete event simulation in multiple system life cycles to support zero-defect composite manufacturing in aerospace industry.
Tao, F., & Zhang, M. (2017). Digital Twin Shop-Floor: a new shop-floor paradigm towards smart manufacturing.
Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data.
Terkaj, W., Gaboardi, P., Trevisan, C., Tolio, T., & Urgo, M. (2019). A digital factory platform for the design of roll shop plants.
Teunter, R. H., Syntetos, A. A., & Zied Babai, M. (2011). Intermittent demand: Linking forecasting to inventory obsolescence.
Tratar, L. F., Mojškerc, B., & Toman, A. (2016). Demand forecasting with four-parameter exponential smoothing.
Uriarte, A. G., Ng, A. H., & Moris, M. U. (2018). Supporting the lean journey with simulation and optimization in the context of Industry 4.0.
Vijayakumar, K., Dhanasekaran, C., Pugazhenthi, R., & Sivaganesan, S. (2019). Digital Twin for factory system simulation.
Wright, L., & Davidson, S. (2020). How to tell the difference between a model and a digital twin.
Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: a review.
Submitted date:
02/19/2020
Accepted date:
09/11/2020