An overview of big data analytics application in supply chain management published in 2010-2019
Iman Ghalehkhondabi; Ehsan Ahmadi; Reza Maihami
Abstract
Keywords
References
Agrahri, H., Ahmed, F., Verma, V. K., & Purohit, J. K. (2017). Benefits of implement big data driven supply chain management: an ISM based model.
Akter, S., & Wamba, S. F. (2019). Big data and disaster management: a systematic review and agenda for future research.
Aloysius, J. A., Hoehle, H., Goodarzi, S., & Venkatesh, V. (2018). Big data initiatives in retail environments: linking service process perceptions to shopping outcomes.
Andersson, J., & Jonsson, P. (2018). Big data in spare parts supply chains.
Arunachalam, D., Kumar, N., & Kawalek, J. P. (2018). Understanding big data analytics capabilities in supply chain management: unravelling the issues, challenges and implications for practice.
Ashton, K. (2009). That ‘internet of things’ thing.
Ayed, A. B., Halima, M. B., & Alimi, A. M. (2015). Big data analytics for logistics and transportation. In
Badiezadeh, T., Saen, R. F., & Samavati, T. (2018). Assessing sustainability of supply chains by double frontier network DEA: a big data approach.
Barbosa, M. W., Vicente, A. C., Ladeira, M. B., & Oliveira, M. P. V. (2018). Managing supply chain resources with big data analytics: a systematic review.
Barratt, M., & Oke, A. (2007). Antecedents of supply chain visibility in retail supply chains: a resource-based theory perspective.
Belhadi, A., Zkik, K., Cherrafi, A., & Yusof, M. (2019). Understanding the capabilities of big data analytics for manufacturing process: insights from literature review and multiple case study.
Benhenni, A. L. (2017). Pragmatic big data and smart manufacturing. In
Biswas, S., & Sen, J. (2016). A proposed framework of next generation supply chain management using big data analytics. In
Boone, C. A., Skipper, J. B., & Hazen, B. T. (2017). A framework for investigating the role of big data in service parts management.
Boone, T., Ganeshan, R., Jain, A., & Sanders, N. R. (2019). Forecasting sales in the supply chain: consumer analytics in the big data era.
Brandon‐Jones, E., Squire, B., Autry, C. W., & Petersen, K. J. (2014). A contingent resource‐based perspective of supply chain resilience and robustness.
Briggs, E., Landry, T. D., & Daugherty, P. J. (2010). Investigating the influence of velocity performance on satisfaction with third party logistics service.
Brinch, M. (2018). Understanding the value of big data in supply chain management and its business processes.
Brinch, M., Stentoft, J., Jensen, J. K., & Rajkumar, C. (2018). Practitioners understanding of big data and its applications in supply chain management.
Bumblauskas, D., Gemmill, D., Igou, A., & Anzengruber, J. (2017a). Smart Maintenance Decision Support Systems (SMDSS) based on corporate big data analytics.
Bumblauskas, D., Nold, H., Bumblauskas, P., & Igou, A. (2017b). Big data analytics: transforming data to action.
Carillo, K. D. A. (2017). Let’s stop trying to be “sexy”: preparing managers for the (big) data-driven business era.
Chaudhuri, A., Dukovska-Popovska, I., Chan, H. K., Subramanian, N., Bai, R., & Pawar, K. S. (2016). Development of a framework for big data analytics in cold chain logistics. In
Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the use of big data analytics affects value creation in supply chain management.
Chen, M., Mao, S., Zhang, Y., & Leung, V. C. (2014).
Cheng, Y., Kuang, Y., Shi, X., & Dong, C. (2018). Sustainable investment in a supply chain in the big data era: an information updating approach.
Choi, T.-M. (2018). Incorporating social media observations and bounded rationality into fashion quick response supply chains in the big data era.
Choi, T.-M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management.
Chopra, S., & Meindl, P. (2007). Supply chain management. Strategy, planning & operation. In C. Boersch & R. Elschen (Eds.),
Clarivate. (2020).
Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: a challenge for the future.
Cochran, D. S., Kinard, D., & Bi, Z. (2016). Manufacturing system design meets big data analytics for continuous improvement.
Costello, T., & Prohaska, B. (2013). Trends and strategies.
Dai, Q., Zhong, R., Huang, G. Q., Qu, T., Zhang, T., & Luo, T. Y. (2012). Radio frequency identification-enabled real-time manufacturing execution system: a case study in an automotive part manufacturer.
Deleris, L. A., Elkins, D., & Paté-Cornell, M. E. (2004). Analyzing losses from hazard exposure: a conservative probabilistic estimate using supply chain risk simulation. In
Dubey, R., Gunasekaran, A., & Childe, S. J. (2019). Big data analytics capability in supply chain agility.
Dubey, R., Gunasekaran, A., Childe, S. J., Luo, Z., Wamba, S. F., Roubaud, D., & Foropon, C. (2018a). Examining the role of big data and predictive analytics on collaborative performance in context to sustainable consumption and production behaviour.
Dubey, R., Luo, Z., Gunasekaran, A., Akter, S., Hazen, B. T., & Douglas, M. A. (2018b). Big data and predictive analytics in humanitarian supply chains.
Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Luo, Z., Wamba, S. F., & Roubaud, D. (2019a). Can big data and predictive analytics improve social and environmental sustainability?
Dubey, R., Gunasekaran, A., Childe, S. J., Roubaud, D., Fosso Wamba, S., Giannakis, M., & Foropon, C. (2019b). Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain.
Dubey, R., Gunasekaran, A., Childe, S. J., Wamba, S. F., & Papadopoulos, T. (2016). The impact of big data on world-class sustainable manufacturing.
Dutta, D., & Bose, I. (2015). Managing a big data project: the case of ramco cements limited.
El-Kassar, A.-N., & Singh, S. K. (2019). Green innovation and organizational performance: the influence of big data and the moderating role of management commitment and HR practices.
Engelseth, P., & Wang, H. (2018). Big data and connectivity in long-linked supply chains.
Feng, Q., & Shanthikumar, J. G. (2018). How research in production and operations management may evolve in the era of big data.
Fisher, D., DeLine, R., Czerwinski, M., & Drucker, S. (2012). Interactions with big data analytics.
Gawankar, S. A., Gunasekaran, A., & Kamble, S. (2020). A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context.
Giagnocavo, C., Bienvenido, F., Ming, L., Yurong, Z., Antonio Sanchez-Molina, J., & Xinting, Y. (2017). Agricultural cooperatives and the role of organisational models in new intelligent traceability systems and big data analysis.
Giannakis, M., & Louis, M. (2016). A multi-agent based system with big data processing for enhanced supply chain agility.
Gobble, M. M. (2013). Big data: the next big thing in innovation.
Guha, S., & Kumar, S. (2018). Emergence of big data research in operations management, information systems, and healthcare: Past contributions and future roadmap.
Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S. F., Childe, S. J., Hazen, B., & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance.
Gunasekaran, A., Yusuf, Y. Y., Adeleye, E. O., & Papadopoulos, T. (2018). Agile manufacturing practices: the role of big data and business analytics with multiple case studies.
Guo, L., Sharma, R., Yin, L., Lu, R., & Rong, K. (2017). Automated competitor analysis using big data analytics.
Gupta, S., Altay, N., & Luo, Z. (2019a). Big data in humanitarian supply chain management: a review and further research directions.
Gupta, S., Chen, H., Hazen, B. T., Kaur, S., & Santibañez Gonzalez, E. D. R. (2019b). Circular economy and big data analytics: a stakeholder perspective.
Gupta, S., Qian, X., Bhushan, B., & Luo, Z. (2019c). Role of cloud ERP and big data on firm performance: a dynamic capability view theory perspective.
Gupta, S., Modgil, S., & Gunasekaran, A. (2020). Big data in lean six sigma: a review and further research directions.
Hanumanthappa, M., & Sarakutty, T. (2011). Predicting the future of car manufacturing industry using data mining techniques.
Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications.
Hofmann, E. (2017). Big data and supply chain decisions: the impact of volume, variety and velocity properties on the bullwhip effect.
Hopkins, J., & Hawking, P. (2018). Big data analytics and IoT in logistics: a case study.
Hu, H., Wen, Y., Chua, T.-S., & Li, X. (2014). Toward scalable systems for big data analytics: a technology tutorial.
Huang, L., Wu, C., & Wang, B. (2019). Challenges, opportunities and paradigm of applying big data to production safety management: From a theoretical perspective.
Iannone, F. (2012). The private and social cost efficiency of port hinterland container distribution through a regional logistics system.
Idc-Vesset, D., Woo, B., Morris, H., Villars, R., Little, G., Bozman, J. S., Borovick, L., Olofson, C. W., Feldman, S., & Conway, S. (2012). Market analysis-worldwide big data technology and services 2012-2015 forecast.
Irani, Z., Sharif, A. M., Lee, H., Aktas, E., Topaloğlu, Z., van’t Wout, T., & Huda, S. (2018). Managing food security through food waste and loss: Small data to big data.
Ittmann, H. W. (2015). The impact of big data and business analytics on supply chain management.
Jagtap, S., & Duong, L. N. K. (2019). Improving the new product development using big data: a case study of a food company.
Jeble, S., Dubey, R., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability.
Jha, M., Jha, S., & O’Brien, L. (2016). Combining big data analytics with business process using reengineering. In
Ji, G., & Tan, K. (2017). A big data decision-making mechanism for food supply chain. In
Ji, S., & Sun, Q. (2017). Low-carbon planning and design in B&R logistics service: a case study of an e-commerce big data platform in China.
Jin, D.-H., & Kim, H.-J. (2018). Integrated understanding of big data, big data analysis, and business intelligence: a case study of logistics.
Kache, F., & Seuring, S. (2017). Challenges and opportunities of digital information at the intersection of big data analytics and supply chain management.
Kaur, H., & Singh, S. P. (2018). Heuristic modeling for sustainable procurement and logistics in a supply chain using big data.
Kshetri, N. (2014). Big data׳ s impact on privacy, security and consumer welfare.
Kumar, A., Shankar, R., Choudhary, A., & Thakur, L. S. (2016). A big data MapReduce framework for fault diagnosis in cloud-based manufacturing.
Kusiak, A. (2017). Smart manufacturing must embrace big data.
Kynast, M., & Marjanovic, O. (2016). Big Data in supply chain management-applications, challenges and benefits. In
Lai, Y., Sun, H., & Ren, J. (2018). Understanding the determinants of big data analytics (BDA) adoption in logistics and supply chain management.
Lamba, K., & Singh, S. P. (2017). Big data in operations and supply chain management: Current trends and future perspectives.
Lamba, K., & Singh, S. P. (2019). Dynamic supplier selection and lot-sizing problem considering carbon emissions in a big data environment.
Lamba, K., Singh, S. P., & Mishra, N. (2019). Integrated decisions for supplier selection and lot-sizing considering different carbon emission regulations in big data environment.
Laney, D. (2001a). Big 3D data management: Controlling data volume, velocity and variety.
Laney, D. (2001b).
Lau, R. Y. K., Zhang, W., & Xu, W. (2018). Parallel aspect‐oriented sentiment analysis for sales forecasting with big data.
Lee, C. K. H. (2017). A GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0.
Lee, J., Lapira, E., Bagheri, B., & Kao, H. (2013). Recent advances and trends in predictive manufacturing systems in big data environment.
Li, B., Ch’ng, E., Chong, A. Y.-L., & Bao, H. (2016). Predicting online e-marketplace sales performances: a big data approach.
Li, L., Chi, T., Hao, T., & Yu, T. (2018). Customer demand analysis of the electronic commerce supply chain using Big Data.
Li, S., Peng, G. C., & Xing, F. (2019). Barriers of embedding big data solutions in smart factories: insights from SAP consultants.
Lin, C. (2016).
Liu, C., Li, H., Tang, Y., Lin, D., & Liu, J. (2019). Next generation integrated smart manufacturing based on big data analytics, reinforced learning, and optimal routes planning methods.
Liu, P. (2017). Pricing strategies of a three-stage supply chain: a new research in the big data era.
Liu, P. (2019). Pricing policies and coordination of low-carbon supply chain considering targeted advertisement and carbon emission reduction costs in the big data environment.
Liu, P., & Yi, S. (2016). Investment decision-making and coordination of supply chain: a new research in the big data era.
Liu, P., & Yi, S. (2017). Pricing policies of green supply chain considering targeted advertising and product green degree in the big data environment.
Liu, Y.-P., Guo, J.-F., & Fan, Y. (2017). A big data study on emitting companies’ performance in the first two phases of the European Union Emission Trading Scheme.
Mandal, S. (2019). The influence of big data analytics management capabilities on supply chain preparedness, alertness and agility.
Mani, V., Delgado, C., Hazen, B. T., & Patel, P. (2017). Mitigating supply chain risk via sustainability using big data analytics: evidence from the manufacturing supply chain.
Mashey, J. R. (1997). Big data... and the next wave of infrastress. In
Mehmood, R., & Graham, G. (2015). Big data logistics: a health-care transport capacity sharing model.
Mikavicaa, B., Kostić-Ljubisavljevića, A., & Radonjić, V. (2015). Big data: challenges and opportunities in logistics systems. In
Militaru, G., Pollifroni, M., & Ioanid, A. (2015). Big data in supply chain management: an exploratory study.
Mishra, D., Gunasekaran, A., Papadopoulos, T., & Childe, S. J. (2018). Big data and supply chain management: a review and bibliometric analysis.
Mishra, N., Singh, A., Rana, N. P., & Dwivedi, Y. K. (2017). Interpretive structural modelling and fuzzy MICMAC approaches for customer centric beef supply chain: application of a big data technique.
Moktadir, M. A., Ali, S. M., Paul, S. K., & Shukla, N. (2019). Barriers to big data analytics in manufacturing supply chains: a case study from Bangladesh.
Mourtzis, D., Vlachou, E., & Milas, N. (2016). industrial big data as a result of IoT adoption in manufacturing.
Nedelcu, B. (2013). About big data and its challenges and benefits in manufacturing.
Nguyen, T., Zhou, L., Spiegler, V., Ieromonachou, P., & Lin, Y. (2018). Big data analytics in supply chain management: a state-of-the-art literature review.
Niebel, T., Rasel, F., & Viete, S. (2019). BIG data-BIG gains? Understanding the link between big data analytics and innovation.
Niu, B., & Zou, Z. (2017). Better demand signal, better decisions? Evaluation of big data in a licensed remanufacturing supply chain with environmental risk considerations.
Niu, B., Dai, Z., & Zhuo, X. (2019). Co-opetition effect of promised-delivery-time sensitive demand on air cargo carriers’ big data investment and demand signal sharing decisions.
O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. (2015). An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities.
Oncioiu, I., Bunget, O. C., Türkeș, M. C., Căpușneanu, S., Topor, D. I., Tamaș, A. S., Rakoș, I.-S., & Hint, M. (2019). The impact of big data analytics on company performance in supply chain management.
Opresnik, D., & Taisch, M. (2015). The value of big data in servitization.
Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S. J., & Fosso-Wamba, S. (2017). The role of big data in explaining disaster resilience in supply chains for sustainability.
Popovič, A., Hackney, R., Tassabehji, R., & Castelli, M. (2018). The impact of big data analytics on firms’ high value business performance.
Prasad, S., Zakaria, R., & Altay, N. (2018). Big data in humanitarian supply chain networks: a resource dependence perspective.
Raut, R. D., Mangla, S. K., Narwane, V. S., Gardas, B. B., Priyadarshinee, P., & Narkhede, B. E. (2019). Linking big data analytics and operational sustainability practices for sustainable business management.
Rehman, M. H., Chang, V., Batool, A., & Wah, T. Y. (2016). Big data reduction framework for value creation in sustainable enterprises.
Reinsel, D., Gantz, J., & Rydning, J. (2018).
Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., & Almeida, C. M. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: a framework, challenges and future research directions.
Rialti, R., Marzi, G., Ciappei, C., & Busso, D. (2019). Big data and dynamic capabilities: a bibliometric analysis and systematic literature review.
Richey Junior, R. G., Morgan, T. R., Lindsey-Hall, K., & Adams, F. G. (2016). A global exploration of big data in the supply chain.
Robak, S., Franczyk, B., & Robak, M. (2014). Research problems associated with big data utilization in logistics and supply chains design and management.
Roßmann, B., Canzaniello, A., von der Gracht, H., & Hartmann, E. (2018). The future and social impact of big data analytics in supply chain management: results from a Delphi study.
Sagaert, Y. R., Aghezzaf, E.-H., Kourentzes, N., & Desmet, B. (2018). Temporal big data for tactical sales forecasting in the tire industry.
Sanders, N. R. (2014).
Sanders, N. R. (2016). How to use big data to drive your supply chain.
Santos, M. Y., Oliveira e Sá, J., Andrade, C., Vale Lima, F., Costa, E., Costa, C., Martinho, B., & Galvão, J. (2017). A big data system supporting bosch braga industry 4.0 strategy.
Schoenherr, T., & Speier‐Pero, C. (2015). Data science, predictive analytics, and big data in supply chain management: current state and future potential.
Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: the real-world use of big data.
Schwab, K., Marcus, A., Oyola, J. O., Hoffman, W., & Luzi, M. (2011).
Seles, B. M. R. P., Sousa Jabbour, A. B. L., Jabbour, C. J. C., Camargo Fiorini, P., Mohd-Yusoff, Y., & Thomé, A. M. T. (2018). Business opportunities and challenges as the two sides of the climate change: Corporate responses and potential implications for big data management towards a low carbon society.
Shang, Y., Dunson, D., & Song, J.-S. (2017). Exploiting big data in logistics risk assessment via bayesian nonparametrics.
Shen, B., Choi, T.-M., & Chan, H.-L. (2019). Selling green first or not? A Bayesian analysis with service levels and environmental impact considerations in the big data era.
Shukla, M., & Mattar, L. (2019). Next generation smart sustainable auditing systems using big data analytics: understanding the interaction of critical barriers.
Shukla, M., & Tiwari, M. K. (2017). Big-data analytics framework for incorporating smallholders in sustainable palm oil production.
Singh, S. K., & El-Kassar, A.-N. (2019). Role of big data analytics in developing sustainable capabilities.
Sonra. (2015, June 15).
StatSlice. (2013).
Swafford, P. M., Ghosh, S., & Murthy, N. (2008). Achieving supply chain agility through IT integration and flexibility.
Swaminathan, S. (2012).
Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: an analytic infrastructure based on deduction graph.
Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data.
Terziovski, M. (2010). Innovation practice and its performance implications in small and medium enterprises (SMEs) in the manufacturing sector: a resource‐based view.
Tsao, Y.-C. (2017). Managing default risk under trade credit: Who should implement Big-Data analytics in supply chains?
Van Asselt, E. D., van der Fels‐Klerx, H. J., Marvin, H. J. P., Van Bokhorst‐van de Veen, H., & Groot, M. N. (2017). Overview of food safety hazards in the European dairy supply chain.
Van der Aalst, W. M. (2012). A decade of business process management conferences: personal reflections on a developing discipline. In
Vera-Baquero, A., Colomo Palacios, R., Stantchev, V., & Molloy, O. (2015). Leveraging big-data for business process analytics.
Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management.
Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study.
Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: certain investigations for research and applications.
Weerakkody, V., Kapoor, K., Balta, M. E., Irani, Z., & Dwivedi, Y. K. (2017). Factors influencing user acceptance of public sector big open data.
Weng, W.-H., & Weng, W.-T. (2013). Forecast of development trends in big data industry. In
Witkowski, K. (2017). Internet of things, big data, industry 4.0-: nnovative solutions in logistics and supply chains management.
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming: a review.
Wu, K.-J., Liao, C.-J., Tseng, M.-L., Lim, M. K., Hu, J., & Tan, K. (2017). Toward sustainability: using big data to explore the decisive attributes of supply chain risks and uncertainties.
Wu, P.-J., & Lin, K.-C. (2018). Unstructured big data analytics for retrieving e-commerce logistics knowledge.
Xu, F., Li, Y., & Feng, L. (2019). The influence of big data system for used product management on manufacturing: remanufacturing operations.
Xu, L. (2016). Construction mode of efficient logistics system under the big data environment.
Yadegaridehkordi, E., Hourmand, M., Nilashi, M., Shuib, L., Ahani, A., & Ibrahim, O. (2018). Influence of big data adoption on manufacturing companies’ performance: an integrated DEMATEL-ANFIS approach.
Yu, L., Zhao, Y., Tang, L., & Yang, Z. (2019). Online big data-driven oil consumption forecasting with Google trends.
Zaki, M., Theodoulidis, B., Shapira, P., Neely, A., & Tepel, M. F. (2019). Redistributed manufacturing and the impact of big data: a consumer goods perspective.
Zhan, Y., Tan, K. H., Li, Y., & Tse, Y. K. (2018). Unlocking the power of big data in new product development.
Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products.
Zhao, R., Liu, Y., Zhang, N., & Huang, T. (2017). An optimization model for green supply chain management by using a big data analytic approach.
Zhong, R. Y., Huang, G. Q., Lan, S., Dai, Q. Y., Chen, X., & Zhang, T. (2015). A big data approach for logistics trajectory discovery from RFID-enabled production data.
Zhong, R. Y., Xu, C., Chen, C., & Huang, G. Q. (2017). Big data analytics for physical internet-based intelligent manufacturing shop floors.