Self-starting single control charts for multivariate processes: a comparison of methods
Eralp Dogu; Min Jung Kim
Abstract
Keywords
References
Albloushi, T., Suwaidi, A., Zarouni, N., Abdelrahman, A., & Shamsuzzaman, M. (2015). Design of X̅&R control charts for monitoring quality of care for hypertension. In
Alt, F. B. (1985). Multivariate quality control. In S. Kotz & N. L. Johnson (Ed.),
Alt, F. B., & Smith, N. D. (1988). 17 multivariate process control. In P. R. Krishnaiah & C. R. Rao Larsen (Eds.),
Chen, G., Cheng, S. W., & Xie, H. (2005). A new multivariate control chart for monitoring both location and dispersion.
Cheng, S. W., & Thaga, K. (2005). Multivariate Max-CUSUM Chart.
Cheng, S. W., & Thaga, K. (2006). Single variables control charts: an overview.
Cornélissen, G., Halberg, F., Hawkins, D., Otsuka, K., & Henke, W. (1997). Individual assessment of antihypertensive response by self-starting cumulative sums.
Diko, M. D., Goedhart, R., & Does, R. J. (2019). A head-to-head comparison of the out-of-control performance of control charts adjusted for parameter estimation.
Doǧu, E. (2012). Monitoring time between medical errors to improve health-care quality.
Doǧu, E. (2015). Identifying the time of a step change with multivariate single control charts.
Doǧu, E., & Kocakoc, I. D. (2011). Estimation of change point in generalized variance control chart.
Doǧu, E., & Kocakoc, I. D. (2013). A multivariate change point detection procedure for monitoring mean and covariance simultaneously.
Eren-Dogu, Z. F., & Dogu, E. (2013). Monitoring the efficiency of use of operating room time with CUSUM charts.
Faraz, A., Woodall, W. H., & Heuchenne, C. (2015). Guaranteed conditional performance of the S 2 control chart with estimated parameters.
Hawkins, D. M. (1987). Self-starting CUSUM charts for location and scale.
Hawkins, D. M., & Maboudou-Tchao, E. M. (2007). Self-starting multivariate exponentially weighted moving average control charting.
Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate exponentially weighted moving covariance matrix.
Hawkins, D. M., & Olwell, D. H. (2012).
Hawkins, D. M., & Zamba, K. D. (2005). Statistical process control for shifts in mean or variance using a changepoint formulation.
Holmes, D. S., & Mergen, A. E. (1993). Improving the performance of the T^2 control chart.
Hu, X., Castagliola, P., Zhou, X., & Tang, A. (2019). Conditional design of the EWMA median chart with estimated parameters.
Jardim, F. S., Chakraborti, S., & Epprecht, E. K. (2019). Chart with estimated parameters: the conditional ARL distribution and new insights.
Jardim, F. S., Chakraborti, S., & Epprecht, E. K. (2020). Two perspectives for designing a phase II control chart with estimated parameters: the case of the Shewhart Xbar chart.
Jensen, W. A., Jones-Farmer, L. A., Champ, C. W., & Woodall, W. H. (2006). Effects of parameters estimation on Control Charts properties: a literature review.
Jones, L. A., Champ, C. W., & Rigdon, S. E. (2001). The performance of exponentially weighted moving average charts with estimated parameters.
Jones, L. A., Champ, C. W., & Rigdon, S. E. (2004). The run length distribution of the CUSUM with estimated parameters.
Keefe, M. J., Woodall, W. H., & Jones-Farmer, L. A. (2015). The conditional in-control performance of self-starting control charts.
Khosravi, P., & Amiri, A. (2019). Self-Starting control charts for monitoring logistic regression profiles.
Kim, M.-J. (2012).
Li, Z., Zhang, J., & Wang, Z. (2010). Self-starting control chart for simultaneously monitoring process mean and variance.
Maboudou-Tchao, E. M., & Hawkins, D. M. (2011). Self-starting multivariate control charts for location and scale.
Quesenberry, C. P. (1991). SPC Q charts for start-up processes and short or long runs.
Quesenberry, C. P. (1993). The effect of sample size on estimated limits for X and S control charts.
Quesenberry, C. P. (1995). On properties of Q charts for variables.
Quesenberry, C. P. (1997).
Shen, X., Tsui, K.-L., Zou, C., & Woodall, W. H. (2016). Self-starting monitoring scheme for poisson count data with varying population sizes.
Thaga, K., & Gabaitiri, L. (2006). Multivariate Max-Chart.
Zamba, K. D., & Hawkins, D. M. (2009). A multivariate change point model for change in mean vector and/or covariance structure.
Zhang, J., Li, Z., & Wang, Z. (2010). A multivariate control chart for simultaneously monitoring process mean and variability.
Zwetsloot, I. M., & Ajadi, J. O. (2019). A comparison of EWMA control charts for dispersion based on estimated parameters.
Zwetsloot, I. M., & Woodall, W. H. (2017). A head-to-head comparative study of the conditional performance of control charts based on estimated parameters.